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2829-516 Caparica, Portugal
E-mail: mw@di.fct.unl.pt

Tiziana Margaria-Steffen
Universität Dortmund
Fachbereich Informatik, LS V, Geb. IV
44221 Dortmund
E-mail: tiziana@ls5.cs.uni-dortmund.de

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): D.2, D.3, F.3

ISSN 0302-9743
ISBN 3-540-21305-8 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

springeronline.com

c© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 10990582 06/3142 5 4 3 2 1 0



www.manaraa.com

Foreword

ETAPS 2004 was the seventh instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised five conferences (FOSSACS, FASE, ESOP, CC, TACAS),
23 satellite workshops, 1 tutorial, and 7 invited lectures (not including those
that are specific to the satellite events).

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools that support these activ-
ities are all well within its scope. Different blends of theory and practice are rep-
resented, with an inclination towards theory with a practical motivation on the
one hand and soundly based practice on the other. Many of the issues involved
in software design apply to systems in general, including hardware systems, and
the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and independent proceedings. Its format is
open-ended, allowing it to grow and evolve as time goes by. Contributed talks
and system demonstrations are in synchronized parallel sessions, with invited
lectures in plenary sessions. Two of the invited lectures are reserved for “uni-
fying” talks on topics of interest to the whole range of ETAPS attendees. The
aim of cramming all this activity into a single one-week meeting is to create a
strong magnet for academic and industrial researchers working on topics within
its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 2004 was organized by the LSI Department of the Catalonia Tech-
nical University (UPC), in cooperation with:

European Association for Theoretical Computer Science (EATCS)
European Association for Programming Languages and Systems (EAPLS)
European Association of Software Science and Technology (EASST)
ACM SIGACT, SIGSOFT and SIGPLAN

The organizing team comprised

Jordi Cortadella (Satellite Events), Nikos Mylonakis, Robert Nieuwenhuis,
Fernando Orejas (Chair), Edelmira Pasarella, Sonia Perez, Elvira Pino,
Albert Rubio

and had the assistance of TILESA OPC.
ETAPS 2004 received generous sponsorship from:

UPC, Spanish Ministry of Science and Technology (MCYT), Catalan
Department for Universities, Research and Information Society (DURSI),
IBM, Intel.
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VI Foreword

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Ratislav Bodik (Berkeley), Maura Cerioli (Genoa), Evelyn Duesterwald
(IBM, Yorktown Heights), Hartmut Ehrig (Berlin), José Fiadeiro (Leicester),
Marie-Claude Gaudel (Paris), Andy Gordon (Microsoft Research, Cambridge),
Roberto Gorrieri (Bologna), Nicolas Halbwachs (Grenoble), Görel Hedin
(Lund), Kurt Jensen (Aarhus), Paul Klint (Amsterdam), Tiziana Margaria
(Dortmund), Ugo Montanari (Pisa), Hanne Riis Nielson (Copenhagen),
Fernando Orejas (Barcelona), Mauro Pezzè (Milan), Andreas Podelski
(Saarbrücken), Mooly Sagiv (Tel Aviv), Don Sannella (Edinburgh), Vladimiro
Sassone (Sussex), David Schmidt (Kansas), Bernhard Steffen (Dortmund),
Perdita Stevens (Edinburgh), Andrzej Tarlecki (Warsaw), Igor Walukiewicz
(Bordeaux), Michel Wermelinger (Lisbon)

I would like to express my sincere gratitude to all of these people and organi-
zations, the program committee chairs and PC members of the ETAPS confer-
ences, the organizers of the satellite events, the speakers themselves, and finally
Springer-Verlag for agreeing to publish the ETAPS proceedings. This year, the
number of submissions approached 600, making acceptance rates fall to 25%.
Congratulations to all the authors who made it into the final program! I hope
that all the other authors still found a way of participating in this exciting event
and I hope you will continue submitting.

In 2005, ETAPS will be organized by Don Sannella in Edinburgh. You will be
welcomed by another “local”: my successor as ETAPS Steering Committee Chair
– Perdita Stevens. My wish is that she will enjoy coordinating the next three
editions of ETAPS as much as I have. It is not an easy job, in spite of what
Don assured me when I succeeded him! But it is definitely a very rewarding
one. One cannot help but feel proud of seeing submission and participation
records being broken one year after the other, and that the technical program
reached the levels of quality that we have been witnessing. At the same time,
interacting with the organizers has been a particularly rich experience. Having
organized the very first edition of ETAPS in Lisbon in 1998, I knew what they
were going through, and I can tell you that each of them put his/her heart, soul,
and an incredible amount of effort into the organization. The result, as we all
know, was brilliant on all counts! Therefore, my last words are to thank Susanne
Graf (2002), Andrzej Tarlecki and Pawe�l Urzyczyn (2003), and Fernando Orejas
(2004) for the privilege of having worked with them.

Leicester, January 2004 José Luiz Fiadeiro
ETAPS Steering Committee Chair
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Preface

This volume contains the proceedings of the seventh FASE, International Con-
ference on Fundamental Approaches to Software Engineering.

FASE 2004 took place in Barcelona, Spain, during March 29–31, 2004, as
part of the 7th European Joint Conference on Theory and Practice of Software
(ETAPS), whose aims, organization, and history are detailed in the separate
foreword by José Luiz Fiadeiro.

It is the goal of FASE to bring together researchers and practitioners in-
terested in the challenges in software engineering research and practice: new
software structuring and scaling concepts are needed for heterogeneous software
federations that consist of numerous autonomously developed, communicating
and interoperating systems. In particular, FASE aims at creating an atmosphere
that promotes a cross-fertilization of ideas between the different communities
of software engineering and related disciplines. New quality assurance methods
are needed to guarantee acceptable standards of increasingly complex software
applications. Different component paradigms are under discussion now, a large
number of specification and modeling language are proposed, and an increas-
ing number of software development tools and environments are being made
available to cope with the problems. At the same time research on new theo-
ries, concepts, and techniques is under way, which aims at the development of a
precise and (mathematically) formal foundation.

The presented contributions involved both pragmatic concepts and their for-
mal foundation, leading to new engineering practices and a higher level of relia-
bility, robustness, and evolvability of heterogeneous software. FASE comprised:

– invited lectures by Serge Abiteboul on Distributed Information Manage-
ment with XML and Web Services and by Gruia-Catalin Roman on A Formal
Treatment of Context-Awareness;

– regular sessions featuring 22 papers selected out of a record number of 91
submissions that ranged from foundational contributions to presentation of
fielded applications; and

– tool demonstrations, featuring 4 short contributions selected out of 7
high-quality tool submissions.

FASE 2004 was hosted by the Technical University of Catalonia (UPC), and,
being part of ETAPS, it shared the sponsoring and support described by the
ETAPS Chair in the Foreword. Like ETAPS, FASE will take place in Edinburgh
next year.

Warm thanks are due to the program committee and to all the referees for
their assistance in selecting the papers, to José Luiz Fiadeiro for mastering the
coordination of the whole ETAPS, and to Fernando Orejas and the whole team
in Barcelona for their brilliant organization.
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VIII Preface

Recognition is due to the technical support team: Martin Karusseit and
Markus Bajohr at the University of Dortmund provided invaluable assistance
to all the involved people concerning the Online Conference Service provided by
METAFrame Technologies during the past three months. Finally, we are deeply
indebted to Claudia Herbers for her first-class support in the preparation of this
volume.

January 2004 Tiziana Margaria and Michel Wermelinger
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Organization IX

Program Committee

Ralph-Johan Back (Åbo Akademi, Finland)
Jean Bézivin (Univ. of Nantes, France)
Maura Cerioli (Univ. di Genova, Italy)
Matthew Dwyer (Kansas State Univ., USA)
Reiko Heckel (Univ. of Paderborn, Germany)
Constance Heitmeyer (Naval Research Laboratory, USA)
Heinrich Hußmann (Ludwig-Maximilians-Univ. München, Germany)
Dan Craigen (ORA, Canada)
Serge Demeyer (Univ. of Antwerp, Belgium)
John Fitzgerald (Univ. of Newcastle upon Tyne, UK)
David Garlan (Carnegie Mellon Univ., USA)
Antónia Lopes (Univ. de Lisboa, Portugal)
Jeff Magee (Imperial College, UK)
Tiziana Margaria (Univ. of Dortmund, Germany (co-chair))
Tom Mens (Univ. de Mons-Hainaut, Belgium)
Mauro Pezzè (Univ. di Milano, Italy)
Gian Pietro Picco (Politecnico di Milano, Italy)
Ernesto Pimentel (Univ. de Málaga, Spain)
Gabriele Taentzer (Technische Univ. Berlin, Germany)
Michel Wermelinger (Univ. Nova de Lisboa, Portugal (co-chair))
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Grégoire Hamon and John Rushby

Improving Use Case Based Requirements
Using Formally Grounded Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Christine Choppy and Gianna Reggio

The GOPCSD Tool: An Integrated Development Environment
for Process Control Requirements and Design . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Islam A.M. El-Maddah and Tom S.E. Maibaum

Testing

Automated Debugging Using Path-Based Weakest Preconditions . . . . . . . . . 267
Haifeng He and Neelam Gupta

Filtering TOBIAS Combinatorial Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Yves Ledru, Lydie du Bousquet, Olivier Maury, and Pierre Bontron

Systematic Testing of Software Architectures in the C2 Style . . . . . . . . . . . . 295
Henry Muccini, Marcio Dias, and Debra J. Richardson

Model Checking and Analysis

Optimising Communication Structure for Model Checking . . . . . . . . . . . . . . . 310
Peter Saffrey and Muffy Calder



www.manaraa.com

Table of Contents XIII

Translating Software Designs for Model Checking . . . . . . . . . . . . . . . . . . . . . . 324
Fei Xie, Vladimir Levin, Robert P. Kurshan, and James C. Browne

Enhancing Remote Method Invocation
through Type-Based Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Carlo Ghezzi, Vincenzo Martena, and Gian Pietro Picco

Specification and Analysis of Real-Time Systems Using Real-Time Maude . 354
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Distributed Information Management
with XML and Web Services�

Serge Abiteboul��

INRIA-Futurs, LRI and Xyleme
Serge.Abiteboul@inria.fr

Abstract. XML and Web services are revolutioning the automatic man-
agement of distributed information, somewhat in the same way HTML,
Web browser and search engines modified human access to world wide
information. To illustrate, we present Active XML that is based on em-
bedding Web service calls inside XML documents. We mention two par-
ticular applications that take advantage of this new technology and novel
research issues in this setting.
This paper is based primarily on research at INRIA-Futurs in the Gemo
Group, around XML and Web services (in particular, the Xyleme, Active
XML and Spin projects).

1 Introduction

The field of distributed data management has centered for many years around
the relational model. More recently, the Web has simplified a world wide (or
intranet) publication of data based on HTML (the backbone of the Web) and
data access using Web browsers, search engines and query forms. However, be-
cause of the inconvenience of a document model (HTML is a model of document
and not a data model) and limitations of the core HTTP protocol, the man-
agement of distributed information remains cumbersome. The situation is today
dramatically improving with the introduction of XML and Web services. The Ex-
tensible Markup Language, XML [32], is a self-describing semi-structured data
model that is becoming the standard format for data exchange over the Web.
Web services [37] provide an infrastructure for distributed computing at large,
independently of any platform, system or programming language. Together, they
provide the appropriate framework for distributed management of information.

From a technical viewpoint, there is nothing really new in XML and Web
services. XML is a tree data model much simpler than many of its ancestors such
as SGML. Web services may be viewed as a simplified version of Corba. Together,
they are bringing an important breakthrough to distributed data management
simply because they propose Web solutions that can be easily deployed and
� The research was partly funded by EC Project DBGlobe (IST 2001-32645), the

RNTL Project e.dot and the French ACI MDP2P.
�� Gemo Team, PCRI Saclay, a joint lab between CNRS, Ecole Polytechnique, INRIA

and Université Paris-Sud.

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 2–12, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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used independently of the nature of the machine, the operating system and the
application languages. XML and Web services do not solve any open problem
but they pave the way for a new generation of systems and generate a mine of
new problems to solve.

We first describe some key aspects of XML and Web services (Section 2).
In Section 3, we argue for Active XML [7], AXML in short, that consists in

embedding calls to Web services in XML documents. AXML documents provide
extensional information as well as intensional one, i.e., means to obtain more
data. Intensional information is specified by calls to Web services. By calling the
service one can obtain up to date information. AXML also provides control of
the service calls both from the client side (pull) or from the server side (push).

We illustrate issues in distributed data management and the use of AXML
through two particular applications. In Section 4, we consider content ware-
houses, i.e., warehouses of non-numerical data, in a Peer-to-Peer environment.
In Section 5, we consider the management of personal data.

This paper is not meant as a survey of distributed data management but more
modestly, as a survey of some works of the author around the use of XML and
Web services for distributed data management. The author wants to thank all
the people with whom he worked on these projects and in particular B. Amann,
O. Benjelloun, S. Cluet, G. Cobéna, I. Manolescu, T. Milo, A. Milo, B. Nguyen,
M.-C. Rousset and J. Widom.

2 XML and Web Services

XML is a new exchange format promoted by the W3C [36] and the industry.
An XML document may be viewed as a labeled ordered tree. An example of an
XML document is given in Figure 1. We will see in the next section that this
document is also an Active XML document. XML provides a nice mediation
model, i.e., a lingua franqua, or more precisely a syntax, that most pieces of
software can or will soon understand. Observe that unlike HTML, XML does
not provide any information about the document presentation. (This is typically
provided externally using a style sheet.)

In an XML document, the nodes are labeled. The document may be typed
with a declaration given in a language called XML schema [33]. If such a docu-
ment typing is provided, the labeling provides typing information for pieces of
information. For instance, the typing may request a movie element to consist of
a title, zero or more authors and reviews. Some software that knows about the
type of this document will easily extract information from it. In that sense, the
labels provide both a type and semantics to pieces of information. The typing
proposed by XML schema is very flexible. In some sense, XML marries the doc-
ument world with the database world and can be used to represent documents,
but also structured or semistructured data [2]. For instance, it allows to describe
a relational database as well as an HTML page.

An essential difference between a data standard such as XML and a document
standard such as HTML is the presence of structure that enables the use of
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<directory>
<movies>
<director>Hitchcock</director>
<movie> <title>Vertigo</title>
<actor>J. Stewart</actor> <actor>K. Novak</actor>
<reviews> <sc service=reviews@cine.com >Vertigo</sc></reviews>

</movie>
<movie> <title>Psycho</title>
<actor>N. Bates</actor>
<reviews> <sc service=reviews@cine.com >Psycho</sc></reviews>

</movie> <sc service=movies@allocine.com >Hitchcock</sc>
</movies>

</directory>

directory

movies

Hitchcock

movie movie

actor reviews

sc

PsychoVertigo

J. Stewart K. Novak Psycho N. BatesVertigo movies@allocine.com

Hichcock

serviceservice

title actor title actor reviews

director

service

sc sc

reviews@cine.com reviews@cine.com

Fig. 1. Active XML document and its tree representation

queries beyond keyword search. One can query XML documents using query
languages such as XPath or XQuery.

Web Services (successors of Corba and DCOM) are one of the main steps
in the evolution of the Web. They allow active objects to be placed on Web
sites providing distributed services to potential clients. Although most of the
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hype around Web services comes from e-commerce, one of their main current
uses is for the management of distributed information. If XML provides the
data model, Web services provide the adequate abstraction level to describe the
various actors in data management such as databases, wrappers or mediators
and the communications between them.

Web services in fact consist of an array of emerging standards. To find the
desired service, one can query yellow-pages using UDDI [31] (Universal Discovery
Description and Integration). Then to understand how to obtain the information,
one use in particular WSDL [38] (Web Service Definition Language), something
like Corba’s IDL for the Web. One can then get the information with SOAP
[30] (the Simple Object Access Protocol), an XML based lightweight protocol
for exchange of information. Of course life is more complicated, so one also often
has to sequence operations (see Web Services Choreography [39]) and consider
issues such as access rights, privacy policy, encryption, payment, transactions,
etc.

XML and Web services are nothing really new from a technical viewpoint.
However, they form a nice environment to recycle old ideas in a trendy environ-
ment. Furthermore, they lead to an El-Dorado in terms of new problems and
challenges for computer science research.

First, the trees are ordered and the typing more flexible. Tree automata [10],
a technology rarely used in the context of data management, is a most appro-
priate tool for XML typing and query processing. Automata theory is perhaps
enriching here with a new dimension the topic of descriptive complexity [16]
that combines logic (to specify queries) and complexity (the resource required
to evaluate queries).

Next, the distribution of data and computation opens new avenues at the
frontier between data management (PODS-SIGMOD [26] like) and distributed
computing (PODC [25] like). The distributed computation of a query may re-
quire opening connections between various query processors and cooperating
towards answering the query, perhaps having partial computations move be-
tween different systems. Indeed, the context of the Web, a P2P environment
with autonomous data sources, is changing dramatically the query evaluation
problem:

– In classical distributed databases, we know about the structure of data in
particular sources and the semantics of their content. On the Web, we typi-
cally discover new sources that we need to exploit. For instance, to integrate
data sources [18], we need to understand their structure, possibly restructure
them (tree rewriting) and build semantic bridges between their information
(ontology mediation).

– In classical data management, we control data updates using technology
such as transaction management or triggers. On the Web, data sources are
autonomous and such control is unavailable. We may have to use services to
synchronize copies of some data. We may also have to subscribe to change
notifications. Often, the only solution is to poll regularly the data source to
learn about changes. In most cases, we have to live with a lower consistency
level.
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Last but not least, we have to deal with the scale of the Web. The most
spectacular applications of distributed data management are perhaps in that re-
spect, Web search engines, e.g., Google, and Web look-up services, e.g., Kazaa.
In both cases, the difficulty is the scaling to possibly billions of documents and
millions of servers. This is leading to new algorithms. This also requires rethink-
ing classical notions such as complexity and computability. For instance, how
would one characterize the complexity of a query requiring a crawl of the entire
Web? Linear? What would be the consistency of the result when a large number
of the pages that have been visited no longer exist or have changed since our
last visit.

3 Active XML

To illustrate the power of combining XML and Web services, we briefly describe
Active XML that consists in embedding Web service calls in XML documents.
This section is based on works in the context of the Active XML project [7].

In Active XML (AXML for short), parts of the data are given explicitly, while
other parts consist of calls to Web services that generate more data. AXML is
based on a P2P architecture. Each AXML peer acts as a client by activating Web
service calls embedded in its documents. It also acts a server by supporting Web
services corresponding to queries or updates over its repository of documents.

AXML is an XML dialect. For instance, the document in Figure 1 is an
AXML document. The sc elements are used to denote embedded service calls.
In this document, reviews are obtained from the cine.com Web site. Information
about more Hitchcock movies may be obtained from the allocine.com site.

The data obtained by a call to a Web service may be viewed as intensional
(it is originally not present). It may also be viewed as dynamic, in the sense of
dynamic Web pages. The same call possibly returns different, up-to-date docu-
ments when called at different times. When a service call is activated, the data
it returns is inserted in the document. Therefore, documents evolve in time as
a consequence of service call activations. Of particular importance is thus the
decision to activate a particular service call. In cases, this activation is decided
by the peer hosting the document. For instance, a peer may decide to call a
service only when the data it provides is requested by a user; the same peer
may choose to refresh the data returned by another call on a periodic basis, say
weekly. In other cases, the Web service provider may decide to send updates
to the client, for instance because the latter registered to a subscription-based,
continuous service.

A key aspect of the approach is that AXML peers exchange AXML docu-
ments, i.e., document with embedded service calls. Let us highlight an essential
difference between the exchange of regular XML data and that of AXML data.
In frameworks such as Sun’s JSP or PHP, dynamic data is supported by pro-
gramming constructs embedded inside documents. Upon request, all the code
is evaluated and replaced by its result to obtain a regular, fully materialized
HTML or XML document. But since Active XML documents embed calls to



www.manaraa.com

Distributed Information Management with XML and Web Services 7

Web services, one does not need to materialize all the service calls before send-
ing some data. Instead, a more flexible data exchange paradigm is possible,
where the sender sends an XML document with embedded service calls (namely,
an AXML document) and gives the receiver the freedom to materialize the data
if and when needed.

To conclude this section, we briefly mention two issues to illustrate the novel
problems that are raised by the approach:

To call or not to call: Suppose someone asks for the information we have
about the Vertigo movie. We may choose to call cine.com to obtain the
reviews or not before sending the data. The decision may be guided by con-
siderations such as performance, cost, access rights, security, etc. Now if we
choose to activate the service call, it may return a document with embedded
service calls and we have to decide whether to activate those or not, and
so on, recursively. The solution we implemented is based on a negotiation
between the peers to determine the type of data to exchange. This leads to
complex automata manipulation [21]. Indeed, the general problem has deep
connections with alternating tree automata, i.e., tree automata alternating
universal and existential states [27].

Lazy service calls: As mentioned above, it is possible in AXML to specify
that a call is activated only when the data it returns may be needed, e.g.,
to answer a query. A difficulty is then to decide whether a particular call is
needed or not. For instance, if someone asks for information about the actors
of “the 39 steps” of Hitchcock, we need to call allocine.com to get more
movies of this director. Furthermore, if this service is sophisticated enough,
we may be able to ask only for information about that particular movie
(“push” the selection to the source). Some surprising connections between
this problem and optimization techniques for deductive database and logic
programming are exhibited in [6].

4 P2P Content Warehousing

In the next two sections, we mention two Web applications based on distributed
information management, P2P content warehousing in this section and personal
data management in the next. The content of this section is based on works in
the Xyleme project [35] for content warehousing and on Spin [5] and MDP2P
[20] for the P2P aspect.

Content Warehouse. Distributed enterprises and more generally communities
centered around some common interest produce and need to share large volumes
of data, e.g., reports, emails, contact addresses, documentation, contracts, Web
sites. It is becoming more and more difficult to manage this information and
critical to be able to find the desired data in a timely manner. This suggests
organizing this information in content warehouses [4].

The goal of a warehouse [28] is to provide an integrated access to hetero-
geneous, autonomous, distributed sources of information. Queries are typically
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evaluated without access to the original sources. The focus here is on a ware-
house of content, i,e., “qualitative information” and documents in various for-
mats, rather than OLAP (on-line analytical processing) warehouses that are
more concerned with “quantitative information”, that are typically organized in
relations.

A content warehouse supports the construction, enrichment, monitoring and
maintenance of large repositories of information with methods to access, ana-
lyze and annotate this information. Clearly, XML is the obvious candidate to
represent the warehouse information, and in particular the meta-data about the
warehouse documents, although some other formats such as pdf, html or doc,
have also to be handled. Furthermore, since most systems will soon support Web
service interfaces, Web services provide the natural infrastructure for communi-
cations in such a warehouse.

Peer to Peer Systems. There are many possible definitions of P2P systems. We
mean here that a large and varying number of computers cooperate to solve
particular tasks (here warehousing tasks) without any centralized authority. In
other words, the challenge is to build an efficient, robust, scalable system based
on (typically) inexpensive, unreliable, computers distributed on a wide area net-
work. In the context of distributed data management, P2P is becoming more
and more popular. See, for instance, [9,24,14,11,1,12].

The implementation of a content warehouse in a P2P setting may be mo-
tivated by a number of factors. For instance, from an economic viewpoint, a
P2P system allows to share the costs and reduce them by taking advantage of
existing infrastructures. Also, in a setting of a content warehouse with a very
large volume of data and many users, we can take advantage of the distribution
to improve performance.

The combination of the concept of warehouse (a centralized access to infor-
mation) and of a P2P architecture (by definition stressing distribution) may seem
a bit confusing, so let us try to articulate it more precisely. The data sources are
heterogeneous, autonomous and distributed. The warehouse presents a unique
entry point to this information, i.e., the warehouse is logically homogeneous and
centralized. A P2P warehouse is an implementation of the concept of warehouse
that is based on distributed peers. So, the warehouse is physically distributed
over heterogeneous and autonomous machines. Note that a higher level of trust
may possibly be achieved between the warehouse peers than between the original
data sources.

From a technical viewpoint, the main issue is distributed data management,
by no means a novel issue [22]. However, in a P2P environment, the context
and in particular, the absence of central authority and the number of peers
(from hundreds to possibly millions), change the rules of the game. Typically,
problems that have long been studied take a different flavor. In particular, the
following issues need to be addressed: (i) Information and service discovery (ii)
Web crawling, (iii) document ranking (for queries) (iv) P2P mediation (integrat-
ing independent ontologies, e.g., [15,13,17]), (v) change monitoring.
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In an on-going project called Spin (for set of pages of interest), we have
worked on a centralized content warehouse. An XML repository is used to store
the data and in particular the meta-data about the documents of the warehouse.
Clearly, the management of meta-data is here an essential component, as advo-
cated in Tim Berners-Lee’s view of the Semantic Web [8]. All the processing is
achieved via Web services, e.g., Web crawling, classification, tagging. A content
warehouse in a particular domain may be specified using some graphical user in-
terface. This specification is compiled into AXML documents where information
to be acquired by the warehouse is described by Web service calls as well as the
processing to be performed on this data. We are currently working on turning
Spin into a P2P system.

5 Personal Data

The second Web application we consider here is distributed personal data man-
agement. This section is influenced by works in the DbGlobe project [23].

The management of personal data is becoming an important issue [19]. We
typically handle more and more personal data in a variety of formats, distributed
on a number of devices. In particular, we handle emails, addresses, bookmarks,
documents, pictures, music, movies, bank accounts, etc. For instance, the infor-
mation we have on a particular friend may be stored on a pda (address book,
agenda), in phone directories (mobile or fix), in car repository (GPS coordinates,
maps), in Web pages (her Web site), in pictures and movies, etc. Furthermore,
lots of small personal data sources will soon be available in our environment,
e.g., our house or our car.

All this personal data should be viewed as a distributed database. Indeed, to
manage such data, we need most of the functionalities we mentioned for content
warehouses; e.g., we need to query it or archive it. Furthermore, we need to
maintain it up to date and in particular, we need to synchronize automatically
various replicas of the same information.

Because of the standards they provide for distributed information manage-
ment, XML and Web services form the appropriate infrastructure for doing this.
Our thesis is that Active XML is the right articulation between the two to build
more flexible systems for distributed personal data management.

One particular aspect of personal data management is that some of the de-
vices are mobile, e.g., pda, car, phone. This has direct impact on aspects such
as availability (a pda may be off line) or performance (a mobile phone has little
storage and limited bandwidth). Also, some functionalities may depend on the
location. For instance, to print a document, we need to find a nearby printer;
and to select a restaurant, we care only for nearby places.

To mention another related application we are considering, consider the cus-
tomization of a personal computer. It is typically is a cumbersome task that
overwhelms most computer users. However, when considered from an abstract
viewpoint, this is a simple task of data management. A particular person first
needs access to its personal data. We already mentioned how this could be
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achieved. Then, the person is used to a particular environment and needs some
specific software. If the specific needs of that person are described in an (A)XML
document, we believe that the task of customizing the system to her could be
handled automatically by the system. In particular, specific software the per-
son uses could be obtained via Web services and maintained as well using Web
service-based subscriptions.

Web services and XML only facilitate the exchange of information. The hard
problems remain such as developing user friendly interfaces in this setting or
automatically integrating and maintaining this information (including change
control).

6 Conclusion

We have briefly discussed XML and Web services. We have illustrated how these
could be used to facilitate the management of information distributed over a
network such as the Web using Active XML and two applications, namely P2P
content warehousing and personal data management. As already mentioned,
there is a mine of new problems to study.

The management of structured and centralized data was made feasible by a
sound foundation based on the development of relational database theory with
deep connections to descriptive complexity. For the management of semistruc-
tured and distributed information, we are now at a stage where a field is building
and a formal foundation is still in infancy. The development of this foundation
is a main challenge for the researchers in the field.
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22. M.T. Özsszu, and P. Valduriez, Principles of Distributed Database Systems,
Prentice-Hall, 1999.

23. E. Pitoura, S. Abiteboul, D. Pfoser, G. Samaras, M. Vazirgiannis, et al, DBGlobe:
a service-oriented P2P system for global computing, SIGMOD Record 32(3): 77-82
(2003), DBGlobe is an IST research project funded by the European Community.

24. The Piazza Project, U. Washington, data.cs.washington.edu/p2p/piazza/
25. PODC, ACM SIGACT-SIGOPS Symposium on Principles of Distributed Comput-

ing.
26. PODS, ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems;
SIGMOD, ACM SIGMOD Conference on the Management of Data.

27. Active Context-Free Games, L. Segoufin, A. Muscholl and T. Schwentick, 2003
(submitted)

28. J. Widom, Research Problems in Data Warehousing, In Proceedings of the 4th
Int’l Conference on Information and Knowledge Management (CIKM), 1995.

29. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, T. D. Nguyen, Using Gossiping to
Build Content Addressable Peer-to-Peer Information Sharing Communities, De-
partment of Computer Science, Rutgers University, 2002.

30. Simple Object Access Protocol (SOAP) by Apache. ws.apache.org/soap/
31. The Universal Description, Discovery and Integration (UDDI) protocol,

www.uddi.org/
32. The Extensible Markup Language (XML), www.w3.org/XML/



www.manaraa.com

12 Serge Abiteboul

33. XML Typing Language (XML Schema), /www.w3.org/XML/Schema
34. XML Query Language (XQuery), www.w3.org/XML/Query
35. Xyleme Web site, www.xyleme.com
36. The World Wide Web Consortium (W3C), www.w3.org/
37. W3C Web Services Activity, www.w3.org/2002/ws/
38. Web Services Description Language (WSDL), www.w3.org/TR/wsdl
39. W3C Web Services Choreography Working Group,

www.w3.org/2002/ws/chor/



www.manaraa.com

A Formal Treatment of Context-Awareness

Gruia-Catalin Roman, Christine Julien, and Jamie Payton

Department of Computer Science and Engineering
Washington University
Saint Louis, MO 63130

{roman,julien,payton}@wustl.edu

Abstract. Context-aware computing refers to a computing paradigm
in which the behavior of individual components is determined by the
circumstances in which they find themselves to an extent that greatly
exceeds the typical system/environment interaction pattern common to
most modern computing. The environment has an exceedingly powerful
impact on a particular application component either because the lat-
ter needs to adapt in response to changing external conditions or be-
cause it relies on resources whose availability is subject to continuous
change. In this paper we seek to develop a systematic understanding of
the quintessential nature of context-aware computing by constructing a
formal model and notation for expressing context-aware computations.
We start with the basic premise that, in its most extreme form, context
should be made manifest in a manner that is highly local in appear-
ance and decoupled in fact. Furthermore, we assume a notion of context
that is relative to the needs of each individual component, and we expect
context-awareness to be maintained in a totally transparent manner with
minimal programming effort. We construct the model from first princi-
ples, seek to root our decisions in these formative assumptions, and make
every effort to preserve minimality of concepts and elegance of notation.

1 Introduction

Context-aware computing is a natural next step in a process that started with the
merging of computing and communication during the last decade and continues
with the absorption of computing and communication into the very fabric of
our society and its infrastructure. The prevailing trend is to deploy systems
that are increasingly sensitive to the context in which they operate. Flexible
and adaptive designs allow computing and communication, often packaged as
service activities, to blend into the application domain in a manner that makes
computers gradually less visible and more agile. These are not new concerns for
software engineers, but the attention being paid to context-awareness enhances
a system’s ability to become ever more responsive to the needs of the end-user or
application domain. With the growing interest in adaptive systems and with the
development of tool kits [1,2] and middleware [3] supporting context-awareness,
one no longer needs to ponder whether context-aware computing is emerging
as a new paradigm, i.e., a new design style with its own specialized models
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and support infrastructure. However, it would be instructive to develop a better
understanding of how this transition took place, i.e., what distinguishes a design
that allows a system to adapt to its environment from a design that could be
classified as employing the context-aware paradigm. This is indeed the central
question being addressed in this paper. We want to understand what context-
aware computing is, and we do so by proposing a simple abstract conceptual
model of context-awareness and by attempting to formalize it. Along the way,
we examine the rationale behind our decisions, thus providing both a systematic
justification for the model and the means for possible future refinements.

The term context-awareness immediately suggests a relation between some
entity and the setting in which it functions. Let us call such an entity the ref-
erence agent – it may be a software or hardware component – and let us refer
to the sum total of all other entities that could (in principle) affect its behavior
as its operational environment. We differentiate the notion of operational envi-
ronment from that of context by drawing a distinction between potentiality and
relevance. While all aspects of the operational environment have the potential to
influence the behavior of the reference agent, only a subset are actually relevant
to the reference agent’s behavior. In formulating a model of context-awareness
we need to focus our attention on how this relevant subset is determined. To
date, most of the research on context-awareness considers a restricted context,
i.e., context is what can be sensed locally, e.g., location, temperature, connec-
tivity, etc. However, distant entities can affect the agent’s behavior, and the size
of the zone of influence depends upon the needs of the specific application. The
scope and quality of the information gathered about the operational environment
affect the cost associated with maintaining and accessing context information.
These suggest that a general model of context-awareness must allow an agent to
work with a context that may extend beyond its immediate locality (i.e., support
node or host) while also enabling it to control costs by precisely specifying what
aspects of the operational environment are relevant to its individual needs as
they change over time.

A model of context-awareness must be expansive, i.e., it must recognize the
fact that distant entities in the operational environment can affect an agent’s
behavior [4]. This requirement states that one should not place a priori limits
on the scope of the context being associated with a particular agent. While
specific instantiations of the model may impose restrictions due to pragmatic
considerations having to do with the cost of context maintenance or the nature
of the physical devices, application needs are likely to evolve with time. As a
consequence, fundamental assumptions about the model could be invalidated. To
balance out the expansive nature of the model and to accommodate the need for
agents to exercise control over the cost of context maintenance, we also require
the model to support a notion of context that exhibits a high degree of specificity.
In other words, it must be possible for context definitions to be tailored to the
needs of each individual agent. Furthermore, as agents adapt, evolve, and alter
their needs, context definitions also should be amenable to modification in direct
response to such developments.
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Expansiveness and specificity are central to achieving generality. They are
necessary but not sufficient features of the context-aware computing paradigm
that consider the way in which the operational environment relates to an agent’s
notion of context, i.e., the distinction between potentiality and relevance. They
fail to consider the manner in which the agent forms and manipulates its own
notion of context. The only way an agent can exercise control over its context
is to have an explicit notion of context. This gives the agent the power to de-
fine its own context and to change the definition as it sees fit. It also formalizes
the range of possible interactions between the agent and its operational envi-
ronment. Consequently, context definition has to be an identifiable element of
the proposed model and must capture the essential features of the agent/context
interaction pattern. Separation of concerns suggests that an agent’s context spec-
ification be separable from its behavior specification. The agent behavior may
result in changes to the definition of context, but the latter should be readily
understood without one needing to examine the details of the agent behavior.
This requirement rules out the option of having to derive context from the ac-
tions of the agent. This distinction is important because many systems interact
with and learn about their operational environment without actually employing
the context-aware paradigm. Finally, context maintenance must be transparent.
This implies that the definition of context must be sufficiently abstract to free
the agent of the operational details of discovering its own context and sufficiently
precise for some underlying support system to be able to determine what the
context is at each point in time.

To illustrate our perspective on context-aware computing, let us examine the
case of an application in which contextual information plays an important role,
but the criteria for being classified as employing the context-aware paradigm are
not met. Consider an agent that receives and sends messages, learns about what
other agents are present in its environment through the messages it receives, and
uses this information to send other messages. Indeed the context plays an impor-
tant role in what the agent does, and the agent makes decisions based upon the
knowledge it gains about its operational environment. More precisely, the agent
implicitly builds an acquaintance list of all other agents in the region through a
gossiping protocol that distributes this information, and it updates its knowledge
by using message delivery failures that indicate agent termination or departure.
However, we do not view this as an instance of the context-aware paradigm; the
way the agent deals with the environment may be considered extensible but it
is not specific, explicit, separable, or transparent. It is particularly instructive
to note what is required to transform this message-passing application into one
that qualifies as an instance of the context-aware paradigm.

Specificity could be achieved by having each agent exercise some judgment
regarding which other agents should or should not be included in its acquain-
tance list. Explicitness could be made manifest by having the agent include a
distinct representation of the acquaintance list in its code – a concrete repre-
sentation of its current context. Separability could be put in place by having
the code that updates the acquaintance list automatically extract agent infor-
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mation from arriving messages for placement in the acquaintance list, e.g., by
employing the interceptor pattern. Transparency requires the design to go one
step further by having the agent delegate the updating of the acquaintance list
to an underlying support infrastructure; this, in turn, demands that the def-
inition of the context be made explicit to the support infrastructure either at
compile or at run time – an evaluation procedure to establish which other agents
qualify as acquaintances and which do not suffices. The result is an application
that exhibits the same behavior but a different design style; the agent’s context
is made manifest through an interface offering access to a data structure that
appears to be local, is automatically updated, and is defined by the agent which
provides the admission policy controlling which agents in the region are included
or excluded from the list. This is not the only way to employ the context-aware
paradigm but clearly demonstrates the need for the designer to adopt a different
mind-set.

The principal objective of this paper is to explore the development of an
abstract formal model for context-aware computing; no such model is available
in the literature to date, other than a preliminary version of this work [5]. Be-
cause our ultimate goal is to achieve a better understanding of the essence of
the context-aware computing paradigm, we seek to achieve minimality of con-
cepts and elegance of notation while remaining faithful to the formative assump-
tions that define our perspective on context-awareness. The resulting model is
called Context UNITY and has its roots in our earlier formal work on Mobile
UNITY [6,7] and in our experience with developing context-aware middleware
for mobility. Context UNITY assumes that the universe (called a system) is pop-
ulated by a bounded set of agents whose behaviors can be described by a finite
set of program types. At the abstract level, each agent is a state transition sys-
tem, and context changes are perceived as spontaneous state transitions outside
of the agent’s control. However, the manner in which the operational environ-
ment can affect the agent state is an explicit part of the program definition. In
this way, the agent code is local in appearance and totally decoupled from that
of all the other agents in the system. The context definition is an explicit part of
the program type description, is specific to the needs of each agent as it changes
over time, and is separate from the behavior exhibited by the agent. The design
of the Context UNITY notation is augmented with an assertional style proof
logic that facilitates formal reasoning about context-aware programs.

The remainder of this paper is organized as follows. The next section presents
our formalization of context-awareness in detail. In Section 3, we outline the
proof logic associated with the model. Section 4 shows how the model can express
key features of several existing context-aware systems. Conclusions appear in
Section 5.

2 Formalizing Context-Awareness

Context UNITY represents an application as a community of interacting agents.
Each agent’s behavior is described by a program that serves as the agent’s proto-
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type. To distinguish agents from each other, each has a unique identifier. Because
we aim to model context-aware systems, an agent must access its environment,
which, in Context UNITY, is defined by the values of the variables other agents
in the system are willing to expose. As described in the previous section agents
require context definitions tailored to their individualized needs. In Context
UNITY, agents interact with a portion of the operational environment defined
through a unique set of variables designed to handle the agent’s context needs.

A central aspect of Context UNITY is its representation of program state.
Three categories of variables appear in programs; they are distinct in the man-
ner in which they relate to context maintenance and access. First, a program’s
internal variables hold private data that the agent uses but does not share with
the other agents in the system. They do not affect the operational environment
of any other agent. Exposed variables store the agent’s public data; the values
of these exposed variables can contribute to the context of other agents. The
third category of variables, context variables, represent the context in which the
particular agent operates. These variables can both gather information from the
exposed variables of other agents and push data out to the exposed variables of
other agents. These actions are governed by context rules specified by each agent
and subject to access control restrictions associated with the exposed variables.

In the remainder of this section, we first detail the structure of a Context
UNITY system. We then show how programs use context variables to define a
context tailored to the needs of each particular agent and the mechanics that
allow an agent to explicitly affect its operational environment. Throughout we
provide examples using the model to reinforce each concept.

2.1 Foundational Concepts

Context UNITY represents an application as a system specification that includes
a set of programs representing the application’s component types. Fig. 1 shows
the Context UNITY representation of a System. The first portion of this def-
inition lists programs that specify the behavior of the application’s individual
agents. Separating the programs in this manner encapsulates the behavior of
different application components and their differing context needs. The Com-
ponents section of the system declares the instances of programs, or agents,
that are present in the application. These declarations are given by referring to
program names, program arguments, and a function (new id) that generates a
unique id for each agent declared. Multiple instantiations of the same program
type are possible; each resulting agent has a different identifier. The final por-
tion of a system definition, the Governance section, captures interactions that
are uniform across the system. Specifically, the rules present in this section de-
scribe statements that can impact exposed variables in all programs throughout
the system. The details of an entire system specification will be made clearer
through examples later in this section. First we describe in detail the contents
of an individual Context UNITY program.

Each Context UNITY program lists the variables defining its individual state.
The declaration of each variable makes its category evident (internal, exposed,
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System SystemName
Program ProgramName (parameters)
declare
internal — internal variable declarations
exposed — exposed variable declarations
context — context variable declarations

initially — initial conditions of variables
assign — assignments to declared variables
context
definitions affecting context variables—they can pull information from and

push information to the environment
end
. . . additional program definitions . . .
Components
the agents that make up the system

Governance
global impact statements

end SystemName

Fig. 1. A Context UNITY Specification

or context). A program’s initially section defines what values the variables are
allowed to have at the start of the program.

The assign section defines how variables are updated. These assignment
statements can include references to any of the three types of variables. Like
UNITY and its descendants, Context UNITY’s execution model selects state-
ments for execution in a weakly-fair manner – in an infinite execution, each
assignment statement is selected for execution infinitely often. In the assign-
ment section, a program can use simple assignment statements, transactions,
or reactions. A transaction is a sequence of simple assignment statements which
must be scheduled in the specified order with no other (non-reactive) statements
interleaved. They capture a form of sequential execution whose net effect is a
large-grained atomic state change. In the assign section of a program, a transac-
tion uses the notation: 〈s1; s2; . . . ; sn〉. A reaction allows a program to respond
to changes in the state of the system. A reaction is triggered by an enabling
condition Q and has the form s reacts-to Q. As in Mobile UNITY, Context
UNITY modifies the execution model of traditional UNITY to accommodate
reactions. Normal statements, i.e., all statements other than reactions, continue
to be selected for execution in a weakly-fair manner. After execution of a normal
statement, the set of all reactions in the system, forming what we call a reactive
program, executes until it reaches fixed-point. During the reactive program’s exe-
cution, the reactive statements are selected for execution in a weakly-fair manner
while all normal statements are ignored. When the reactive program reaches a
fixed-point, the weakly-fair selection of normal statements continues.

In Context UNITY, an agent’s behavior is defined exclusively through its
interaction with variables. To handle context interactions, Context UNITY in-
troduces context variables and a special context section that provides the rules
that manage an agent’s interaction with its desired context. Specifically, the
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context section contains definitions that sense information from the operational
environment and store it in the agent’s context variables. The rules can also allow
the agent to affect the behavior of other agents in the system by impacting their
exposed variables. The use of this special context section explicitly separates
the management of an agent’s context from its internal behavior.

Two prototypical uses of the context section lie at the extremes of sensing
and affecting context. First, a program’s context definition may only read the
exposed variables of other programs but not affect the variables’ values. When
used in such a way, we refer to the context variables as sentient variables be-
cause they only gather information from the environment to build the agent’s
context. In the other extreme case, a program can use its context variables to
disperse information to components of the environment. From the perspective
of the reference agent, this affects the context for other agents, and we refer
to context variables used in this manner as impact variables. While these two
extremes capture the behavior of context-aware systems in the most common
cases, the generality of Context UNITY’s context specification mechanism al-
lows it to model a variety of systems that fall between these two extremes. The
examples discussed in Section 4 demonstrate this in more detail.

The acquaintance list application introduced in the previous section provides
a list of nearby coordination participants. Several context-aware systems in the
literature, e.g., Limone [8], use this data structure as a basis for more sophisti-

System AcquaintanceManagement
Program Agent1
declare
exposed id ! agent id : agent id

λ ! location : location
context Q : set of agent id

assign
. . . definition of local behavior . . .

context
define — define Q based on desired properties of acquaintance list members

end
Program Agent2
declare
exposed id ! agent id : agent id

λ ! location : location
context Q : set of agent id

assign
. . . definition of local behavior . . .

context
define — define Q based on different restrictions

end
Components
Agent1[new id], Agent1[new id], Agent2[new id]

end AcquaintanceManagement

Fig. 2. A Context-Aware System for Acquaintance Maintenance
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cated coordination mechanisms. The acquaintance list is defined by dynamically
changing needs of a reference agent. Fig. 2 shows a Context UNITY specification
for an application that relies on the usage of an acquaintance list. This system
consists of three agents of two differing types. Each agent stores its unique agent
id in an exposed variable named agent id that is available to other programs.
Because we are modeling systems that entail agent mobility, each agent also has
a variable named location that stores its location. The movement of the agent
is outside this example; it could occur through local assignment statements to
the location variable (in the assign section of the individual program) or even
by a global controller (via the Governance section of the system). Both id
and λ are local handles for built-in variables whose names are agent id and lo-
cation, respectively. We discuss these built-in variables in more detail later in
this section. Each program type has individualized behavior defined via the as-
sign section that may use additional context variables or definitions. In this
example, we are most concerned with the maintenance of the acquaintance list.
Each agent declares a context variable Q of type set that will store the con-
tents of the acquaintance list. Different program types (in this case, Agent1 and
Agent2 ) employ different eligibility qualification criteria for the members of the
acquaintance list, exemplified in the context section of each program type. This
example shows a high-level definition of a context variable. In the acquaintance
management specification, each program’s context section contains a rule that
describes how the context variable Q is updated. Later in this section we will
show exactly what this rule entails. First however, we expound on the structure
of Context UNITY exposed variables.

ι the variable’s unique id
π the id of the owner agent
η the name
τ the type
ν the value
α the access control policy

Fig. 3. Variable Components

Exposed Variables Revisited. In
UNITY and many of its descendants,
variables are simply references to values.
In Context UNITY, both internal and
context variables adhere to this standard.
However, references to exposed variable
appearing in the program text are refer-
ences to more complex structures needed
to support context-sensitive access within
an unknown operational environment.
These handle names have no meaning outside the scope of the program. A com-
plete semantic representation of exposed variables is depicted in Fig. 3. Each
exposed variable has a unique id ι – uniqueness could be ensured by making
each variable unique within an agent and combining this with the unique agent
id. This unique id is used in the context interaction rules to provide a handle to
the specific variable. The agent owning the exposed variable, π or type agent id,
also appears in the semantic structure and allows an exposed variable to be se-
lected based on its owner. An exposed variable’s name, η, provides information
about the kind of data the variable contains; the name of an exposed variable
can be changed by the program’s assignment statements. The type τ reflects
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the exposed variable’s data type and is fixed. An exposed variable’s value, ν,
refers to the data value held by the variable. Programs refer to the value when
assigning to the variable or when accessing the value the variable stores. The
value of an exposed variable can be assigned in the assign section or can be
determined by a different program’s impact on its environment. The program
can control the extent to which its exposed variables can be modified by others
using the access control policy described below.

Modeling Access Control. The final component of an exposed variable in
Context UNITY, α, stores the variable’s access control policy. Because many
context-aware systems and applications use some form of access restriction, Con-
text UNITY provides a generalized mechanism for modeling access control. An
access policy determines access based on properties of the particular agent ac-
cessing the variable. The access control policy determines both the readability
and writability of the particular variable on a per-agent basis. The function α
takes as arguments credentials provided by the reference agent and returns the
set of allowable operations on this variable, e.g., {r, w} signifies permission to
both read and write the particular exposed variable. Because Context UNITY as-
sociates an access control policy with each variable, it models the finest-grained
access restrictions possible in a context-aware application. This model can be
tailored to the needs of current context-aware systems, including those that uti-
lize a trusted third party for authentication.

Built-in Variables. To ease representation of context-aware interactions, Con-
text UNITY programs contain four built-in exposed variables. In Context
UNITY, these variables are automatically declared and have default initial val-
ues. An individual program can override the initial values in the program’s ini-
tially section and can assign and use the variables throughout the assign and
context sections. The first of these variables has the name “location” and fa-
cilitates modeling mobile context-aware applications by storing the location of
the program owning the variable. This variable is exposed and available to other
programs to use. An example use of this variable was shown in the system in
Fig. 2. The definition of location can be based on either a physical or logical
space and can take on many forms. This style of modeling location is identical
to that used in Mobile UNITY. The second of Context UNITY’s built-in vari-
ables is also exposed and has the name “type”, and its value is the program’s
name (e.g., “Agent1” or “Agent2” in the example system). As we will see, the
use of this variable can help context variables select programs based on their
general function. The third of the built-in variables has the name “agent id”
and holds the unique identifier assigned to the agent when the agent is instan-
tiated in the Components section. The final built-in variable is internal and
has the local handle “credentials”. It is used in Context UNITY interactions to
support access control restrictions. Specifically, the variable stores a profile of
attributes of the program that are provided to the access control policies of the
exposed variables of other programs. These credentials are available to access
control policies when determining whether or not this program has access to a
particular exposed variable.
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Context Specification. Context-aware applications rely on conditions in the
environment for adaptation. Context UNITY facilitates specification of context
interactions through the use of context variables that use the exposed variables
of other agents to provide exactly the context that a reference agent requires.
In a Context UNITY program, the context section of a program contains the
rules that dictate restrictions over the operational environment to define the
context over which an agent operates. Additionally, the rules in the context
section allow the agent to feed back information into its context. Structuring the
context section as a portion of each program allows agents to have explicit and
individualized interactions with their contexts.

As indicated in the beginning of this section, due to the unpredictable na-
ture of the dynamic environments in which context-aware agents operate, their
context definitions require a mechanism to handle their lack of a priori knowl-
edge about the operational environment. In Context UNITY, we introduce non-
deterministic assignment statements to the definition of context. Specifically,
the non-deterministic assignment statement x := x′.Q assigns to x a value x′

non-deterministically selected from all values satisfying the condition Q [9]. A
program’s context rules define how an agent can access and interact with the
exposed variables of other agents. It can select which other agents’ variables
affect its behavior by employing non-deterministic assignments and existential
quantification. The flexibility of this selection mechanism allows agents that con-
tribute to the context to be selected based on attributes defined in their exposed
variables. For example, in a mobile context-aware application, an agent can use
the built-in Context UNITY location variable to store its current physical loca-
tion. Whenever the component moves, the agent updates the location variable
using an assignment statement in the local assign section. Another agent can use
relative distance to identify which other agents are to contribute to its context.
We refer to this selection of agents based on their properties as context-sensitive
program selection.

Context UNITY wraps the use of non-deterministic assignment in a special-
ized notation for handing context-aware interactions. To manage its interaction
with context information, a program uses statements of the following form in its
context section:

c uses quantified variables
given restrictions on variables
where c becomes expr

expr1 impacts exposed variable1

expr2 impacts exposed variable2

. . .
[reactive]

This expression, which we refer to as a context rule, governs the interactions
associated with the context variable c. A context rule first declares existentially
quantified dummy variables to be used in defining the interactions with the ex-
posed variables that relate to the context variable c. The scope of these dummy
variables is limited to the particular context rule that declares them. The ex-
pression can refer to any exposed variables in the system, but referring to other
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programs’ exposed variables explicitly requires the program to have advance
knowledge about the other components it will encounter over time, which pro-
grams rarely have. Typically, context-aware applications rely on opportunistic
interactions that cannot be predetermined. To capture this style of interaction
in Context UNITY, the exposed variables that contribute to the context rule
are selected in a context-sensitive manner using the restrictions provided in the
rule’s definition. As one example, because a wireless context-aware application
contains many agents that may or may not be connected, the restrictions used
in a context rule for a particular application must account for the connectivity
restrictions imposed by the operational environment.

Given the set of exposed variables selected in accordance with the restric-
tions, the context rule can define an expression, expr, over the exposed variables
and any locally declared variables (internal, exposed, or context). The result of
evaluating this expression is assigned to the context variable. The context rule
can also define how this context variable impacts the operational environment.

The execution of each context rule can optionally be declared reactive,
which dictates the degree of consistency with which the context rule reflects
the environment. If a context rule is declared reactive, it becomes part of the
system’s reactive program that is executed to fixed-point after the execution of
each normal statement. Using a reaction guarantees that the context informa-
tion expressed by the rule remains consistently up to date because no normal
statements can execute until the reactive program reaches fixed-point. If not
declared reactive, the context rule is a normal, unguarded statement and part
of Context UNITY’s normal execution model.

Within a context rule, if no explicit restrictions are placed on the referenced
exposed variables, two restrictions are automatically assumed. The first requires
that the variable referenced be an exposed variable in its owner program since
only exposed variables are accessible from other programs. The second implicit
restriction requires that the program whose context uses a particular exposed
variable must satisfy the variable’s access control policy. Consider the following
simple context rule that pulls the value out of some exposed variable, places the
value in the context variable c, and deletes the value from the exposed variable
used. The statement is a reactive statement that is triggered when a is larger
than the value of some local variable x:

c uses a
given a > x
where c becomes a

0 impacts a
reactive

This reactive construct makes the rule part of the system’s set of reactive state-
ments. This context rule corresponds to the following formal definition, which
includes the two implicit restrictions on the exposed variable a as discussed
above:
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〈a : a = a′.(var[a′] > x ∧ {r, w} ⊆ var[a′].α(credentials))
:: (c := var[a].ν || var[a].ν := 0) reacts − to true

〉1

In this definition, we introduce var, a logical table that allows us to refer to
all variables in the system, referenced by the unique variable id. When selecting
the variable a from the table, the statement above really selects its variable id,
which serves as a reference to a specific entry in the table var. In this statement,
for instance, the exposed variable a is non-deterministically selected from all
exposed variables whose access control policies allow this agent access to read
and write the exposed variable that the dummy variable a refers to. The latter
is determined by applying the variable’s access control policy to this agent’s
credentials. The set returned by this application can contain any combination
of r and w, where the presence of the former indicates permission to read the
variable, and the presence of the latter indicates permission to write the variable.
After selecting the particular exposed variable to which a refers, the rule contains
two assignments. The first assigns the value stored in a (i.e., var[a].ν) to the
context variable c. The second assignment captures the fact that the context
rule can also impact the environment, in this case by zeroing out the exposed
variable used.

The power of the context-sensitive selection of exposed variables becomes
apparent only when the restrictions within the context rules are used. Within
the restrictions, the context rule can select exposed variables to be used based
on the exposed variables’ names, types, values, owning agent, or even based
on properties of other variables belonging to the same or different agents. To
simplify the specification of these restrictions, we introduce a few new pieces of
notation. Referring to the system-wide table of variables (i.e., var) is cumbersome
and confusing because the table is both virtual and distributed. For this reason,
context rules refer directly to indexes in the table instead. Specifically, in this
notation, we allow the variable id a to denote the value of the variable in var
for entry a, i.e., var[a].ν. To access the other components of the variable (e.g.,
name), we abuse the notation slightly and allow a.η to denote var[a].η. Because a
common operation in context-sensitive selection relies on selecting variables from
the same program, we also introduce a shorthand for accessing a variable by the
combination of name and program. To do this, when declaring dummy variables,
a context rule can restrict both the names and relative owners of the variables.
For example, the notation: x ! name1, y ! name2 in p; z ! name3 in q refers to three
variables, one named name1 and a second named name2 that both belong to the

1 The three-part notation 〈op quantified variable : range :: expression〉 used
throughout the text is defined as follows: The variables from quantified variables
take on all possible values permitted by range. If range is missing, the first colon is
omitted and the domain of the variables is restricted by context. Each such instan-
tiation of the variables is substituted in expression, producing a multiset of values
to which op is applied, yielding the value of the three-part expression. If no instan-
tiation of the variables satisfies range, the value of the three-part expression is the
identity element for op, e.g., true when op is ∀ or zero if op is “+” .
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same agent whose agent id can be referenced as p. The third variable, z, must
be named name3 and located in program q. q may or may not be the same as p,
depending on further restrictions that might be specified. Additional variables
can be listed in this declaration; they are grouped by program and separated by
semicolons. If no combination of variables in the system satisfies the constraints,
then the dummy variables are undefined, and the rule reduces to a skip.

As a simple example of a context rule, consider a program with a context
variable called c that holds the value of an exposed variable with the name data
and located on an agent at the same location as the reference. This context
variable simply represents the context, and it does not change the data stored
on the agent owning the exposed variable. To achieve this kind of behavior, the
specification relies on the existence of the built-in exposed variable with the
name location, locally referred to as λ. The context rule for the context variable
c uses a single exposed variable that refers to the data that will be stored in c.
In this example, we leave the rule unguarded, and it falls into the set of normal
statements that are executed in a weakly-fair manner.

c uses d ! data, l ! location in p
given l = λ
where c becomes d

Formally, using the above notation is equivalent to the following expression:

〈d, l : (d, l) = (d′, l′).({r} ⊆ var[d′].α(credentials) ∧ {r} ⊆ var[l′].α(credentials)∧
var[d′].η = data ∧ var[l′].η = location∧
var[d′].π = var[l′].π ∧ var[l′].ν = λ.ν)

::c := var[d].ν
〉

Because the expression assigned to the context variable c is simply the value of
the selected exposed variable, the most interesting portion of this expression is
the non-deterministic selection of the exposed variables. The formal expression
non-deterministically selects a variable to pull data from that satisfies a set of
conditions. These conditions rely on the selection of a second exposed variable
that stores the program’s location. The first line of the non-deterministic selec-
tion checks the access control function for each of the variables to ensure that
this agent is allowed read access given its credentials. The second line restricts
the names of the two variables. The variable d being selected must be named
data, according to the restrictions provided in the rule. The location variable is
selected based on its name being location. The final line in the non-deterministic
selection deals with the locations of the two variables. The first clause ensures
that the two variables (d and l) are located in the same program. The second
clause ensures that the agent that owns these two variables is at the same loca-
tion as the agent defining the rule.

To show how these expressions can be used to facilitate modeling real-world
context-aware interactions, we revisit the acquaintance list example from earlier
in the section. More extensive examples will be discussed in Section 4.

In Fig. 2, we gave only a high level description of the context rules required
to define an agent’s acquaintance list. To define the membership qualifications
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exactly, the agent uses a context rule that adds qualifying agents to the context
variable Q that stores the acquaintance list. In this particular case, assume that
the program wants to restrict the acquaintance list members to other agents
within some predefined range. This range is stored in a local variable whose
local handle is referred to as range. The acquaintance list context variable can
be defined using the following rule:

Q uses l ! location in a
given |l − λ| ≤ range
where Q becomes Q ∪ {a}
reactive

This expression uses the two handles range and λ to refer to local variables that
store the maximum allowable range and the agent’s current location, respectively.
This statement adds agents that satisfy the membership requirements to the
acquaintance list Q one at a time. Because it is a reactive statement that is
enabled when an agent is within range, the rule ensures that the acquaintance list
remains consistent with the state of the environment. As a portion of the reactive
program that executes after each normal statement, this context rule reaches
fixed-point when the acquaintance list contains all of the agents that satisfy the
requirements for membership. An additional rule is required to eliminate agents
that might still be in Q but are no longer in range:

Q uses l ! location in a
given |l − λ| > range
where Q becomes Q − {a}
reactive

Governing Universal Behaviors. Fig. 1 showed that the final portion of
a Context UNITY system specification is a Governance section. It contains
rules that capture behaviors that have universal impact across the system. These
rules use the exposed variables available in programs throughout the system to
affect other exposed variables in the system. The rules have a format similar to
the definition of a program’s local context rules except that they do not affect
individual context variables:

use quantified variables
where restrictions on quantified variables

expr1 impacts exposed variable1

expr2 impacts exposed variable2

. . .

As a simple example of governance, imagine a central controller that, each time
its governance rule is selected, non-deterministically chooses an agent in the
system and moves it, i.e., it models a random walk. This example assumes a one-
dimensional space in which agents are located; essentially the agents can move
along a line. Each agent’s built-in location variable stores the agent’s position on
the line, and another variable named direction indicates which direction along the
line the agent is moving. If the value of the direction variable is +1, the agent
is moving in the positive direction along the line; if the value of the direction
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variable is −1, the agent is moving in the negative direction. We arbitrarily
assume the physical space for movement is bounded by 0 on the low end and 25
on the upper end. The governance rule has the following form:

use d ! direction, l ! location in p
where l + d impacts l

(if l + d = 25 ∨ l − d = 0 then − d else d) impacts d

The non-deterministic selection clause chooses a d and l from the same pro-
gram with the appropriate variable names. The first of the impact statements
moves the agent in its current direction. The second impact statement switches
the agent’s direction if it has reached either boundary. The rules placed in the
Governance section can be declared reactive, just as a local program’s context
rules are. The formal semantic definition of context rules in the Governance
section differs slightly from the definition outlined above in that the governance
rules need not account for the access control policies of the referenced exposed
variables. This is due to the fact that the specified rules define system-wide in-
teractions that are assumed, since they are provided by a controller, to be safe
and allowed actions. As an example, the formal definition for the rule described
above would be:

〈d, l : (d, l) = (d′, l′).(var[l′].η = location ∧ var[d′].η = direction∧
var[l′].π = var[d′].π)

:: var[l].ν := var[l].ν + var[d].ν
||var[d].ν := −var[d].ν if l + d = 25 ∨ l + d = 0

〉

Using the unique combination of independent programs, their context rules,
and universal governance rules, Context UNITY possesses the ability to model a
wide-variety of applications in the area of context-aware computing. We demon-
strate this in Section 4 by providing snippets of Context UNITY systems required
to model applications taken from the context-aware literature. First, in the next
section, we briefly overview the proof logic associated with the Context UNITY
model.

3 Proof Logic

Context UNITY has an associated proof logic largely inherited from Mobile
UNITY [6], which in turn builds on the original UNITY proof logic [10]. Pro-
gram properties are expressed using a small set of predicate relations whose
validity can be derived directly from the program text, indirectly through trans-
lation of program text fragments into Mobile UNITY constructs, or from other
properties through the application of inference rules. In all of these systems, the
fundamental aspect of proving programs correct deals with the semantics of indi-
vidual program statements. UNITY contains only standard conditional multiple
assignment statements, while both Mobile UNITY and Context UNITY extend
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this model with reactive statements and transactions. Context UNITY also adds
non-deterministic assignment statements. In all of these models, proving indi-
vidual statements correct starts with the use of the Hoare triple [11].

For the normal statements in UNITY, a property such as:

{p}s{q} where s in P

refers to a standard conditional multiple assignment statement s exactly as it
appears in the text of the program P . By contrast, in a Mobile UNITY or Context
UNITY program, the presence of reactive statements requires us to use:

{p}s∗{q} where s ∈ N
where N denotes the normal statements of P while s∗ denotes a normal state-
ment s modified to reflect the extended behavior resulting from the execution
of the reactive statements in the reactive program R consisting of all reactive
statements in P . The following inference rule captures the proof obligations as-
sociated with verifying a Hoare triple in Context UNITY under the assumption
that s is not a transaction:

{p}s{H}, H �→ (FP(R) ∧ q) in R
{p}s∗{q}

The first component of the hypothesis states that, when executed in a state
satisfying p, the statement s establishes the intermediate postcondition H. This
postcondition serves as a precondition of the reactive program R, that, when
executed to fixed-point, establishes the final postcondition q. The “in R” must
be added because the proof of termination is to be carried out from the text of
the reactive statements, ignoring other statements in the system. This can be
accomplished with a variety of standard UNITY techniques. It is required that
the predicate H leads to a fixed-point and q in the reactive program R. This
proof obligation (i.e., H �→ (FP(R) ∧ q) in R) can be proven with standard
techniques because R is treated as a standard UNITY program.

For transactions of the form 〈s1; s2; . . . ; sn〉 we can use the following inference
rule before application of the one above:

{a}〈s1; s2; . . . sn−1〉∗{c}, {c}s∗
n{b}

{a}〈s1; s2; . . . sn〉{b}
where c may be guessed at or derived from b as appropriate. This represents
sequential composition of a reactively-augmented prefix of the transaction with
its last sub-action. This rule can be used recursively until we have reduced the
transaction to a single sub-action. Then we can apply the more complex rule
above to each statement. This rule may seem complicated, but it represents
standard axiomatic reasoning for ordinary sequential programs, where each sub-
statement is a predicate transformer that is functionally composed with others.

Finally, Context UNITY introduces the notion of non-deterministic assign-
ment to the Mobile UNITY proof logic. The proof obligation of these non-
deterministic assignments differs slightly from that of the standard assignment
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statements. Given the property {p}s{r} in UNITY, if the statement s is a non-
deterministic assignment statement of the form x := x′.Q(x′), then the inference
rule describing the associated proof obligation for the statement s has the form:

{p ∧ ∃x′ :: Q(x′)}s{∀x′ : Q(x′) :: r}
{p}s{r}

Special care must be taken to translate Context UNITY context rules from
both the local program context sections and the Governance section to stan-
dard notation (i.e., to the appropriate normal or reactive statements) before
applying the proof logic outlined here. Once translated as described in the pre-
vious section, proof of the system can be accomplished directly by applying the
rules outlined above.

To prove more sophisticated properties, UNITY-based models use predicate
relations. Basic safety is expressed using the unless relation. For two state pred-
icates p and q, the expression p unless q means that, for any state satisfying
p and not q, the next state in the execution must satisfy either p or q. There
is no requirement for the program to reach a state that satisfies q, i.e., p may
hold forever. Progress is expressed using the ensures relation. The relation p
ensures q means that for any state satisfying p and not q, the next state must
satisfy p or q. In addition, there is some statement in the program that guaran-
tees the establishment of q if executed in a state satisfying p and not q. Note that
the ensures relation is not itself a pure liveness property but is a conjunction
of a safety and a liveness property; the safety part of the ensures relation can
be expressed as an unless property. In UNITY, these predicate relations are
defined by:

p unless q ≡ 〈∀s : s in P :: {p ∧ ¬q}s{p ∨ q}〉
p ensures q ≡ (p unless q) ∧ 〈∃s : s in P :: {p ∧ ¬q}s{q}〉

where s is a statement in the program P . Mobile UNITY and Context UNITY
use the same definitions since all distinctions are captured in the verification
of the Hoare triple. Additional relations may be derived to express other safety
(e.g., invariant and stable) and liveness (e.g., leads-to) properties.

4 Patterns of Context-Awareness

Much published research acknowledges the need for applications that rapidly
adapt to changes in resource availability and the operational environment. As a
result, a number of researchers sought to provide context-aware software systems
designed to function in a variety of operating scenarios. These systems vary
in their approaches to managing context; models that underlie context-aware
systems range from a simple client-server model in which servers provide context
information directly to clients, to sophisticated tuple space coordination models
in which the details of communicating context information is transparent to the
application. In this section, we examine a representative set of context-aware
systems found in the literature, abstract their key features, and suggest ways to
model them in Context UNITY.
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4.1 Simple Context Interactions

Initial work in context-aware computing resulted in the development of applica-
tions that use relatively simple context definitions. Such systems often separate
concerns related to providing and using context. Many systems consist of kiosks,
entities which provide context information to visitors, which use context and
state information to adapt their behavior.

Applications exhibiting the characteristics of the simple kiosk-visitor interac-
tion pattern include context-aware office applications such as Active Badge [12]
and PARCTab [13]. In these systems, personnel carry devices that periodically
communicate a unique identifier via a signal to fixed sensors, allowing the loca-
tion of the carrier to be known. An application uses the location information to
adapt the office environment accordingly in response to the changing location of
the carrier, e.g., by forwarding phone calls to the appropriate office or changing
the applications available on a workstation. Another type of context-aware ap-
plications that use simple context interactions relate to the development of tour
guides, e.g., Cyberguide [14] and GUIDE [15]. In these applications, tourists
carry mobile devices equipped with context-aware tour guide software. As a
tourist moves about in a guide-friendly area, his display is updated according
to locally stored preferences combined with context information provided by
stationary access points located at points of interest.

In all of the context-aware applications described above, a particular type of
entity provides context information and another type reads and uses the provided
information. Generally, one of the parties is stationary, while the other is mobile.
We can readily capture this style of interaction in Context UNITY. Agents
providing context information to other agents in the Context UNITY system
do so through the use of exposed variables. Agents obtain the provided context
information through the use of context variables, the values of which are defined
by values of selected exposed variables of context-providing agents.

Fig. 4 illustrates the interaction between a visitor and kiosks in a simple
museum guide system. In this system, each stationary museum kiosk provides
information about an exhibit at its location using an exposed variable. A kiosk in
the southeast corner of the museum gives information about a painting through
its exposed variable e named “painting” with a textual description of the paint-
ing as the variable’s value. The kiosks in the northeast and northwest corners of
the museum each provide information about a certain sculpture by naming its
exposed variable e “sculpture,” and assigning to the variable a short textual de-
scription of the work of art at that location. As a particular visitor moves around
the room, his context variable, c, defined to contain a co-located sculpture ex-
hibit, changes in response to the available context. If new context information
about a sculpture is available, the visitor’s display is updated to show the in-
formation. The figure depicts what happens when a visitor walks around the
museum. The initial position of the visitor agent is depicted by the dashed box
labeled “Agent.” As the visitor moves around the museum in the path indicated
by the dotted arrow, the context variable c is updated. Specifically, when the
visitor reaches the northeast corner of the museum, the context variable c is
updated to contain information about the sculpture at that location. Such an
application can be specified in the Context UNITY notation, as shown below.
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Fig. 4. A simple guide system in Context UNITY

For brevity, we show only the most interesting aspect of the system specification,
which is a visitor’s context rule:

c uses e ! sculpture, l ! location in p
given l = λ
where c becomes e

More complex patterns of interaction are frequently utilized in the devel-
opment of context-aware systems. In some systems, for instance, kiosks provide
context information to a stationary context manager, and the context manager
communicates directly with visitors to adapt their behavior accordingly given
the current conditions of the environment. An instance of this pattern of inter-
action is found in the Gaia operating system [16], which manages active spaces.
An active space is a physical location in which the physical and logical resources
present can be adapted in response to changes in the environment. A typical
interaction in an active space is as follows: a user enters the active space and
registers with the context manager, which uses information about the user and
the environment to perform appropriate actions, e.g., turn on a projector and
load the user’s presentation. Such a system can be modeled in Context UNITY
similarly to those systems described above that exhibit simple context interac-
tions: users are providing context information to the context manager through
the use of exposed variables, and the context manager uses context variables to
obtain context information and react accordingly.
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4.2 Security-Constrained Context Interactions

Security is a major concern in the development of all modern software systems,
including those supporting context-awareness. In several systems, multi-level
security mechanisms are provided through the use of domains. A domain provides
a level of security and isolates the available resources according to the level
of security offered. Agents authorized to operate within that domain have the
ability to act upon all resources within a domain, and a domain may have an
authorizing authority that grants and revokes entering and exiting agents’ access
rights. Examples of systems exhibiting such characteristics include the Gaia file
system [16] and the multi-level access control proposed by Wickramasuriya and
Venkatasubramanian [17].

Waiting Room Exam Area

L L

Patient

n

c

s

L

Reacts!

Patient

n

c

s

L

Reacts!

Reacts!

Fig. 5. An example security-constrained context-aware application in Context UNITY.
In the waiting room domain, which offers a low level of security in its exposed variable
L, the patient’s sensitive information about symptoms is protected from inclusion in
the domain by the symptom variable’s access control function. The shading on the
oval labeled s indicates that the symptom variable is not accessible to anyone in the
environment. As the patient moves to the exam area domain offering high level security,
the patient’s domain security level is updated immediately, as indicated by the arrow
labeled “reacts.” As a result of the changed security level, a second reaction is triggered
whose effect is to alter the access control function of the symptom variable s to allow
the value to be available to those in the exam area domain.

Fig. 5 illustrates an example use of such an interaction style. In the example,
a patient at a doctor’s office must provide information about himself in order to
receive treatment. Some of the information provided is fairly public knowledge
and can be viewed by the receptionist and other patients, e.g., name and con-
tact information. Other information is highly sensitive and personal, e.g., health
history, and should only be shared with a doctor. To facilitate this kind of inter-
action, the doctor’s office is divided into two areas that provide different levels of
privacy: the waiting room and the exam area. The waiting room is a public space
(low-security), since the receptionist and other patients in the waiting room can



www.manaraa.com

32 Gruia-Catalin Roman, Christine Julien, and Jamie Payton

view the information provided therein. The exam area is private (high-security),
since only the patient and doctor can view the information.

To describe such applications in Context UNITY, domains could reveal their
security level using an exposed variable L named “security level.” Each patient
agent uses a context rule for its context variable L to discover the level of security
offered by the domain in which it is located. Because the definition is built to
be strongly consistent using a reactive statement, the agent’s perception of the
security level offered by its current domain is guaranteed to be accurate and up
to date. Each patient provides his name, contact information, and symptoms
through the use of exposed variables n, c, and s. A patient controls how his
information is made available through the use of each variable’s access control
function. This access control function can be changed during the execution of the
program to reflect the agent’s changing data protection needs. Using a reaction,
it is possible to ensure that the access control function is immediately changed
to reflect a change in the security level as soon as a new domain (and hence, a
new level of security) is entered.

4.3 Tailored Context Definitions

Often, the amount of context information available to a context-aware agent
grows large and unmanageable. To avoid presenting an agent with an overwhelm-
ing amount of context in such a scenario, it is desirable to limit the amount of
context information that the agent “sees” based on properties of its environment.
An example of a context-aware system that does just this is EgoSpaces [3], a
middleware for use in ad hoc networks. At the heart of EgoSpaces is the view con-
cept, which restricts an agent’s context according to the agent’s individualized
specification. A view consists of constraints on network properties, the agents
from which context is obtained, and the hosts on which such agents reside. These
constraints are used to filter out unwanted items in the operational environment
and results in presenting the agent with a context (view of the world) tailored
to its particular needs.

In a general sense, systems such as EgoSpaces consist of possibly mobile
agents that are both providers and users of context, and a context management
strategy that is performed on a per-agent basis. An individualized context is
managed on behalf of each agent by matching items from the entire operational
environment against the restrictions provided in the view definition, and present-
ing the result to the agent as its context. Such a system can be readily expressed
in Context UNITY. To act as a context provider, an agent generates pieces of
context information and places them in an exposed variable, a tuple space, in
the case of EgoSpaces, i.e., a data repository consisting of tuples that the agent
wishes to contribute as context. An agent provides information about itself and
properties about the host on which it resides in exposed variables named “agent
profile” and “host profile,” respectively. They allow other agents to filter the op-
erational environment according to the host and agent constraints in their view
definitions. To act as a context user, we model an agent’s view using a rule for
a context variable v named “view.” The value of v is defined to be the set of
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all tuples present in exposed tuple space variables of other reachable agents for
which the exposed agent profile properties, exposed host profile properties, and
exposed network properties of hosts match the reference agent’s constraints. An
example context rule that establishes a view v for an agent with id i to “see”
can be described as follows:

v uses lts ! tuple space, a ! agent profile, h ! host profile in i
given reachable(i) ∧ eligibleAgent(a) ∧ eligibleHost(h)
where v becomes v − (v ↑ i) ∪ lts
reactive

The function reachable encapsulates the network constraints that establish
whether an agent should or should not be considered based on network topol-
ogy data. The notation v ↑ i indicates a projection over the set v that contains
tuples owned by the agent i. It is possible to obtain such a projection since we
assume that each generated tuple has a field which identifies the owner of the
tuple using the generating agent’s unique id. In order for an agent to perform
changes to the view v and have them propagate to the correct tuple space lts
additional context rules are needed.

4.4 Uniform Context Definition

Coordination models offer a high degree of decoupling, an important design
characteristic of context-aware systems. In many distributed computing envi-
ronments, tuple spaces are permanently attached to agents or hosts. In some
models, these pieces merge together to logically form a single shared tuple space
in a manner that takes into consideration the connectivity among agents or
hosts. An agent interacts with other agents by employing content-based retrieval
(rd(pattern) and in(pattern)), and by generating tuples (out(tuple)). Of-
ten, the traditional operations are augmented with reactions that extend their
effects to include arbitrary atomic state transitions. Systems borne out of such a
tuple space coordination paradigm can be considered context-aware; an agent’s
context is managed by the tuple space system in the form of tuples in a logically
shared tuple space.

Examples of such context-aware systems are TSpaces [18], JavaSpaces [19],
MARS [20], and LIME [21]. A common characteristic of all these systems is
the fact that agents that enter in a sharing relation have the same definition of
context, i.e., the context rules are uniform and universally applied. Among the
systems we cite here, LIME is the most general, as it incorporates both physical
mobility of hosts and logical mobility of agents, and provides tuple space sharing
in the most extreme of network environments – the ad hoc network. In LIME,
agents are units of execution, mobility, and data storage, while hosts are simply
containers of agents. Hosts may be mobile, and agents can migrate from host to
host. Agents may be associated with several local tuple spaces, distinguished by
name. Since it is a passive entity, a host has no tuple space. A LIME agent’s
relevant context is determined by the logically merged contents of identically
named tuple spaces held by mutually reachable agents.
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To capture the essential features of context-aware systems having the charac-
teristics described above in Context UNITY, it suffices to endow an agent with
one exposed variable named localTS that offers its local tuple space for sharing
and a second exposed variable named sharedTS that should provide access to all
the tuples making up the current context. The value of the latter is the union of
tuples contained in exposed local tuple space variables belonging to connected
agents. Connectivity can be defined based on various properties of the network,
e.g., network hops, physical distance, etc. In MARS, only agents residing on the
same host are connected. In LIME, agents are connected when residing on the
same host or on physically connected hosts.

A final and important point to note about the modeling of such systems
is that since the shared tuple space definition is uniform across all agents, we
can capture it in the Governance section of a Context UNITY system. While
it is possible to define an agent’s context locally in its program description,
using the Governance section highlights the fact that connected agents share a
symmetric context. In addition, it is more economical for a programmer to write
a single context definition since it applies to the entire system. The resulting
context rule included in the Governance section is as follows:

use tsc ! sharedTS in a; ts l ! localTS in b
given connected(a, b)
where tsc − (tsc ↑ b) ∪ ts l impacts tsc

reactive

The result of this context rule is a tuple space shared among connected agents.
This brings to an end our discussion on how Context UNITY relates to some

of the existing models of context-awareness. The most striking observation about
this informal evaluation of the model is the simplicity exhibited by each of the
context rules that were generated in this section.

5 Conclusions

The formulation of the Context UNITY model is a case study designed to help us
gain a better understanding of the essential features of the context-aware com-
puting paradigm. A key feature of the model is the delicate balance it achieves
between placing no intrinsic limits on what the context can be while empow-
ering the individual agent with the ability to precisely control the context def-
inition. Linguistically the distinction is captured by the notions of operational
environment and context, expansive with respect to potential and specific with
respect to relevance. In the model, the two concepts have direct representations
in terms of exposed and context variables. The other fundamental characteris-
tic of the model is rooted in the systematic application of software engineer-
ing methodological principles to the specifics of context-aware computing. The
functionality of the application code is separated from the definition of context.
This decoupling is fundamental in a setting where adaptability is important – a
program design cannot anticipate the details of the various operational environ-
ments the program will encounter throughout its life time. The model enables
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this decoupling through the introduction of context rules that exploit existential
quantification and non-determinism in order to accommodate the unknown and
unexpected. Context UNITY explicitly captures the essential characteristics of
context-awareness, as we experienced then in our work and observed them in
that of others. Moreover, the defining traits of many existing models appear to
have simple and straightforward representations in Context UNITY, at least at
an abstract level. While we acknowledge that further refinements and evalua-
tion of the model are needed, all indications to date suggest that the essential
features of context-aware computing are indeed present in the model.
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Abstract. Software models are key in separating and solving independent de-
velopment concerns. However, there is still a gap on how to transition design 
information among these separate, but related models during development and 
maintenance. This paper addresses the problem on how to maintain the consis-
tency of UML class diagrams during various levels of refinement. We present a 
new approach to automated consistency checking called ViewIntegra. Our ap-
proach separates consistency checking into transformation and comparison. It 
uses transformation to translate model elements to simplify their subsequent 
comparison. Transformation-based consistency checking, in the manner we use 
it, is new since we use transformation to bridge the gap between software mod-
els. No intermediate models or model checkers are required; developers need 
only be familiar with the models they design with and none other. The separa-
tion of transformation and comparison makes our approach to consistency 
checking more transparent. It also makes our approach useful for both propagat-
ing design changes among models and validating consistency. This gives de-
velopers added flexibility in deciding when to re-generate a model from scratch 
or when to resolve its inconsistencies. Although this paper emphasizes the ad-
aptation and evaluation of class diagrams, we found our technique to be equally 
useful on other models. Our approach is tool supported. 

1   Introduction 

In the past decades, numerous software models were created to support software 
development at large. Models usually break up software development into smaller, 
more comprehensible pieces utilizing a divide and conquer strategy. The major draw-
back of models is that development concerns cannot truly be investigated all by them-
selves since they depend on one another. If a set of issues about a system is investi-
gated, each through its own models, then the validity of a solution derived from those 
models requires that commonalities (redundancies) between them are recognized and 
maintained in a consistent fashion. Maintaining consistency between models is a non-
trivial problem. It is expensive and labor intensive despite the vast number of past and 
existing research contributions.  
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In this work, we introduce a transformation-based approach to consistency check-
ing called ViewIntegra. This paper describes our approach to automated consistency 
checking and shows how to translate models to simplify their comparison. The effect 
is that redundant information from one model is re-interpreted in the context and 
language of another model followed by a simple, one-to-one comparison to detect 
differences. We limit the discussion in this paper to the abstraction and refinement of 
UML-like class diagrams [24]. We believe our approach to be equally applicable to 
other kinds of models. 

Figure 1 depicts the principle of transformation-based consistency checking. In or-
der to compare the two (user-defined1) models A and B (e.g., high-level model and 
low-level model), we transform one of them into ‘something like the other’ so that 
the one becomes easier comparable to the other. For example, our approach trans-
forms the low-level class diagram into a form that makes the results directly compa-
rable with the high-level diagram. As part of our collaboration with Rational Corpora-
tion we created such an transformation technique [9] and, in this paper, we will dem-
onstrate how its results can be used for direct, one-to-one comparison to detect incon-
sistencies.  

Our approach separates the propagation of design information (transformation) 
from the comparing of design information (consistency checking). It follows that 
transformation may be used independently from comparison for change propagation. 
For example, the above mentioned transformation technique can be used during re-
verse engineering to generate a high-level class diagram from a lower-level one; or 
the transformation technique can be used during consistency checking to suggest its 
transformation results as an option for resolving inconsistencies. 

Traceability among model elements is needed to guide transformation and com-
parison. We found that it is typically very hard to generate traceability information in 
detail although developers are capable of approximating it [6]. This would be a prob-
lem for any consistency checking approach but our approach can alleviate this prob-
lem significantly. This paper will thus also demonstrate how our approach behaves 
with a partial lack of traceability information. 

                                                           
1  User-defined views are diagrams that are created by humans (e.g., Fig. 2. ). Derived views 

(interpretations) are diagrams that are automatically generated via Transformation. 
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Fig. 1. View transformation and mapping to complement view comparison 
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Because our approach separates transformation from comparison during consis-
tency checking, it also benefits from reuse of previously transformed, unchanged 
design information. This greatly improves performance because subsequent compari-
sons require partial re-transformations only. Another benefit is that consistency rules 
are very generic and simple since they have to compare alike model elements only.  

We evaluated our transformation-based approach to consistency checking on vari-
ous types of heterogonous models like class diagrams, state chart diagrams, sequence 
diagrams [8], and the C2SADEL architecture description language [10]. Furthermore, 
we validated the usefulness of our approach (in terms of its scope), its correctness 
(e.g., true errors, false errors), and scalability via a series of experiments using third-
party models [1,2] and in-house developed models. Our tool support, called 
UML/Analyzer, fully implements transformation-based consistency checking for 
class and C2SADEL diagrams. The other diagrams are partially supported only.  

The remainder of this paper is organized as follows: Section 2 introduces an ex-
ample and discusses abstraction and refinement problems in context of two class 
diagrams depicted there. Section 3 will highlight consistency checking without trans-
formation and discusses in what cases it is effective and where it fails. Section 4 in-
troduces a transformation technique for abstracting class diagrams and discusses how 
it improves the scope of detectable inconsistencies. Section 4 discusses how our 
transformation and consistency checking methods are also able to interpret incom-
plete and ambiguous model information. Section 5 discusses issues like scope, accu-
racy, and scalability in more detail and Section 6 summarizes the relevance of our 
work with respect to related work. 

2   Example 

Figure 2 depicts two class diagrams of a Hotel Management System (HMS) at two 
levels of abstraction. The top diagram is the higher-level class diagram with classes 
like Guest and Hotel, and relationships like “a guest may either stay at a hotel or may 
have reservations for it.” This diagram further states that a Hotel may have Employ-
ees and that there are Expense and Payment transactions associated with guests (and 
hotels). It is also indicated that a Guest requires a Security deposit. The diagram uses 
three types of relationships to indicate uni-directional, bi-directional, and part-of 
dependencies (see UML definition [24]). For instance, the relationship with the dia-
mond head indicates aggregation (part-of) implying that, say, Security is a part of 
Guest. Additionally, the diagram lists a few methods that are associated with classes. 
For instance, the class Expense has one method called getAmount(). 

The bottom part of Figure 2 depicts a refinement of the left side. Basic entities like 
Guest or Expense are still present although named slightly differently2 and additional 
classes were introduced. For instance, the lower-level diagram makes use of new 
classes like Reservation or Check to refine or extend the higher-level diagram. The 
                                                           
2  It must be noted that we use a disjoint set of class names in order to avoid naming confusions 

throughout this paper. Duplicate names are allowed as part of separate name spaces. 
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refined class diagram uses the same types of relationships as the high-level one plus 
generalization relationships (triangle head) to indicate inheritance. The low-level 
diagram also describes methods associated with classes more extensively. 

Both diagrams in Figure 2 separately describe the structure of the HMS system. 
Obviously, there must be some commonality between them (i.e., redundancy). For 
instance, the high-level class Guest is equivalent to the low-level class GuestEntity 
and the high-level relationship “has” (between Guest and Expense) is equivalent to 
the combined relationships with the classes Transaction and Account between them. 
The table in Figure 2 describes several cases of one-to-many mappings such as Hotel 
maps to HotelEntity, Room, HotelCollection, one case of a many-to-many mapping 
(there are several choices of how reservation_for and stays_at map to the low-level 
diagram), one case of a many-to-one mapping (HotelCollection is assigned to Hotel 
and Collection), and many cases of no mappings altogether (e.g., Employee in the 
high-level diagram or Account in the low-level diagram).  

Knowledge on how model elements in separate diagrams relate to one another is 
commonly referred to as traceability (or mapping) [13]. Traceability is usually gener-
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Fig. 2. High-level and low-level class diagrams of HMS and mapping table 
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ated manually [16] (either by using common names or maintaining trace tables as 
depicted in Figure 2) but there exists some automation [6]. Like other consistency 
checking approaches, our approach requires some traceability knowledge but a dis-
cussion on how to derive it is out of the scope of this paper.  

3   Simple Consistency Checking 

Current consistency checking approaches detect inconsistencies by transforming 
models into some third-party language followed by constraint-based reasoning (often 
model checking) in context of that language. For instance, consistency checking ap-
proaches like JViews (MViews) [14], ViewPoints [15] or VisualSpecs [4] read dia-
grams, translate them into common (and usually formal) representation schemes, and 
validate inconsistency rules against them. These approaches have shown powerful 
results; they are precise and computationally efficient. But there are also unresolved 
side effects that one could well argue to be outside the scope of consistency checking 
but that are related and significant: 
(1) Lack of Change Propagation: Existing approaches solve the problem of detecting 

inconsistencies very well but they lack support for the subsequent, necessary ad-
aptation of models once inconsistencies are found. 

(2) Lack of Traceability: Existing approaches require complete traceability to guide 
consistency checking. Generating traceability is a hard, error-prone activity with 
a potentially little life span. 

4   Transformation-Based Consistency Checking 

We describe our approach to automated consistency checking next and also discuss 
how it is able to handle above side effects. Our approach, called ViewIntegra [8], 
exploits the redundancy between models: for instance, the high-level diagram in Fig-
ure 2 contains information about the HMS system that is also captured in the low-
level diagram. This redundant information can be seen as a constraint. Our approach 
uses transformation to translate redundant model information to simplify their com-
parison. The effect is that redundant information from one model is re-interpreted in 
the context and language of another model followed by a simple, one-to-one com-
parison to detect differences (effectively enforcing the constraint).  

Abstraction Implementing Transformation 

In the course of evaluating nine types of software models [8] (class, object, sequence, 
and state chart diagrams, their abstractions and C2SADEL) we identified the need for 
four transformation types called Abstraction, Generalization, Structuralization, and 
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Translation. This paper focuses on 
inconsistencies during refinement 
and thus only needs Abstraction. See 
[8] for a discussion on the other 
types.  

Abstraction deals with the simpli-
fication of information by removing 
details not necessary on a higher 
level. In [7], we identified two types 
of abstractions called compositional 
abstraction and relational abstrac-
tion. Compositional abstraction is 
probably the more intuitive abstrac-
tion type since it closely resembles 
hierarchical decomposition of sys-
tems. For instance, in UML, a tree-
like hierarchy of classes can be built 
using a feature of classes that allows 
them to contain other classes. Thus, a 
class can be subdivided into other 
classes. In relational abstraction it is 
the relations (arrows) and not the 
classes that serve as vehicles for 
abstraction. Relations (with classes) 
can be collapsed into more abstract 
relations. Relational abstraction is 
needed since it is frequently not 
possible to maintain a strict tree-
hierarchy of classes. Our abstraction 
technique has been published previ-
ously; we will provide a brief sum-
mary here only. For a more detailed 
discussion, please refer to [7,9]. 

In order to abstract the low-level 
diagram in Figure 2, we have to 
apply both abstraction types. Figu-
re 3 shows a partial view of Figure 2 
depicting, in the top layer, the high-
level classes Hotel, Guest, and Pay-
ment and, in the bottom layer, their 
low-level counterparts HotelEntity, 
HotelCollection, Room, GuestEntity, 
and PaymentTransaction. The bot-
tom layer also depicts relationships 
among the low-level classes.  
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Fig. 3. Abstraction applied on part of HMS showing 
high-level, low-level, and derived modeling infor-
mation 
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The first abstraction step is to use compositional abstraction to group low-level 
classes that belong to single high-level classes. For instance, the low-level classes 
HotelEntity, HotelCollection, and Room are all part of the same high-level class Hotel 
(recall traceability in Figure 2). The grouped class, called Hotel, is depicted in the 
first (1) derived view in Figure 3. Besides grouping the three low-level classes, the 
abstraction method also replicated the inter-dependencies of those three classes for 
the derived, high-level class. It can be seen that the derived class Hotel now has rela-
tionships to Reservation and Guest that were taken from HotelEntity and Room re-
spectively. Also note that the single low-level classes GuestEntity and Payment-
Transaction were grouped into the more high-level, derived classes Guest and Pay-
ment. They also took all inter-relationships from their low-level counterparts. Com-
positional abstraction simplified the low-level class diagram somewhat but it is still 
not possible to compare it directly to the high-level diagram. To simplify comparison, 
helper classes such as Reservation, Account, and Transaction need to be eliminated 
since they obstruct our understanding on the high-level relationships between classes 
such as Hotel and Guest. The problem is that those classes were not assigned to any 
high-level classes and thus could not be eliminated via compositional abstraction.  

The second abstraction step is to group low-level relationships into single high-
level relationships. For instance, the low-level relationship path going from Guest via 
Reservation to Hotel in Figure 3 (bottom) may have some abstract meaning. This 
meaning can be approximated through simpler, higher-level model elements. In par-
ticular, this example shows an aggregation relationship between the classes Reserva-
tion and Guest (diamond head) indicating that Reservation is a part of Guest. The 
example also shows a uni-directional association relationship from Hotel to Reserva-
tion indicating that Reservation can access methods and attributes of Hotel but not 
vice versa. What the diagram does not depict is the (more high-level) relationship 
between Guest and Hotel. Semantically, the fact that Reservation is part of a Guest 
implies that the class Reservation is conceptually within the class Guest. Therefore, if 
Reservation can access Hotel, Guest is also able to access Hotel. It follows that Guest 
relates to Hotel in the same manner as Reservation relates to Hotel making it possible 
for us to replace Reservation and its relationships with a single association originat-
ing in Guest and terminating in Hotel (third derived view in Figure 3).  

In the course of inspecting numerous UML-type class diagrams, we identified over 
120 class abstraction rules [9]. Table 1 shows a small sample of these abstraction 
rules as needed in this paper. Abstraction rules have a given part (left of “equals”) and 
an implies part (right of “equals”). Rules 1 and 8 correspond to the two rules we dis-

Table 1. Excerpt of abstraction rules for classes [9] 

1) Class x Association x Class x AggregationRight x Class equals Association 100
2) Class x AggregationLeft x Class x AssociationLeft x Class equals AssociationLeft 100
3) Class x Association x Class x AggregationLeft x Class equals Association 90
4) Class x AggregationLeft x Class x GeneralizationLeft x Class equals AggregationLeft 100
5) Class x GeneralizationLeft x Class x GeneralizationLeft x Class equals GeneralizationLeft 100
6) Class x DependencyRight x Class x AggregationRight x Class equals DependencyRight  100
7) Class x AssociationRight x Class x GeneralizationRight x Class equals AssociationRight 70
8) Class x Aggregation x Class equals Class 100  
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cussed so far. Since the directionality of relationships is very important, the rules in 
Table 1 use the convention of extending the relationship type name with “Right” or 
“Left” to indicate the directions of their arrowheads. Furthermore, the number at the 
end of the rule indicates its reliability. Since rules are based on semantic interpreta-
tions, those rules may not always be valid. We use reliability numbers as a form of 
priority setting to distinguish more reliable rules from less reliable ones. Priorities are 
applied when deciding what rules to use when. We will later discover that those reli-
ability numbers are also very helpful in determining false errors. It must be noted that 
rules may be applied in varying orders and they may also be applied recursively. 
Through recursion is it possible to eliminate multiple helper classes as in the case of 
the path between PaymentTransaction and GuestEntity (see second (2) and third (3) 
derived views in Figure 3). 

Compositional and relational abstraction must be applied to the entire low-level 
diagram (Figure 2). A part of the resulting abstraction is depicted in the second row in 
Figure 3 (third (3) view). We refer to this result as the interpretation of the low-level 
diagram. This interpretation must now be compared to the high-level diagram. 

Comparison 

The abstraction technique presented above satisfies our criteria of a good transforma-
tion method because it transforms a given low-level class diagram into ‘something 
like’ the high-level class diagram. Obviously, consistency checking is greatly simpli-
fied because a straightforward, one-to-one comparison will detect inconsistencies. 
This section introduces consistency rules for comparison. The beginning of Section 4 
listed the lack of traceability as a major challenge during consistency checking. This 
section shows how to identify inconsistencies, and in doing so, how to handle missing 
traceability. In the following, we will first describe the basics of comparison and how 
to handle traceability under normal conditions. Thereafter, we will discuss ambiguous 
reasoning to handle missing traceability. In the following we will refer to the inter-
pretation as the abstracted (transformed) low-level class diagram and to the realiza-
tion as the existing high-level class diagram. The goal of consistency checking is to 
compare the realization with the interpretation. 

Before transformation, we knew about (some) traceability between the high-level 
diagram (realization) and the low-level diagram but no traceability is known between 
the realization and the interpretation. This problem can be fixed easily. Any transfor-
mation technique should be able to maintain traceability between the transformation 
result (interpretation) and the input data (low-level diagram). This is easy because 
transformation knows what low-level model elements contribute to the interpretation. 
Through transitive reasoning, we then derive traceability between the realization and 
the interpretation. For example, we know that the derived Hotel is the result of group-
ing {HotelEntity, Room, HotelCollection} (see dashed arrows in Figure 3) and we 
know that this group traces to the high-level Hotel (mapping table in Figure 2). Thus, 
there is a transitive trace dependency between the class Hotel in the realization and 
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the Hotel in the interpretation. Arrows with circular arrowheads in Figure 3 show 
these transitive trace dependencies between the realization and interpretation.  

Ideally, there should be one-to-one traces between realization and interpretation 
elements only. Unfortunately, partial knowledge about trace dependencies may result 
in one-to-many dependencies or even many-to-many dependencies (e.g., realization 
relation reservation_for traces to two relationships in the interpretation). This is rep-
resented with a fork-shaped trace arrow in Figure 3. 

In the following we present a small sample of consistency rules relevant in this pa-
per. Consistency rules have two parts; a qualifier to delimit the model elements it 
applies to and a condition that must be valid for the consistency to be true3: 

 

1. Type of low-level relation is different from abstraction: 
∀ r ∈ relations, interpretation(r)≠null ⇒ type(interpretation(r))=type(r) 

Rule 1 states that for a relation to be consistent it must have the same type as its 
corresponding interpretation. Its qualifier (before “⇒”) defines that this rule applies 
to relations only that have a known interpretation. The traceability arrow in Figure 3 
defines such known interpretations (or in reverse known realizations). In Figure 3, we 
have six interpretation traces; three of which are originating from relationships (circu-
lar ends attached to lines): the realization relations “stays_at” and “reservation_for” 
satisfy above condition4, however, the realization relation “makes” does not. The 
latter case denotes an inconsistency because “makes” is of type “aggregation” and its 
interpretation is of type “association.” If we now follow the abstraction traces back-
ward (dashed arrows, that were generated during abstraction), it becomes possible to 
identify the classes Account and Transaction as well as their relationships to 
GuestEntity and PaymentTransaction a having contributed to the inconsistent inter-
pretation. 

 

2. Low-level relation has no corresponding abstraction: 
∀ r ∈ relations, abstractions(r)->size=0 ∧ realizations(r)=null ⇒  
¬[∃ c ∈ classes(r), realizations(c)≠null] 

Rule 2 states that all (low-level) relations must trace to at least one high-level 
model element. To validate this case, the qualifier states that it applies (1) to relations 
that do not have any abstractions (dashed arrows) and (2) to relations that do not 
have realizations. Figure 3 has many relations (derived and user-defined ones). 
Checking for relations that do not have abstractions ensures that only the most high-
level, abstracted relations are considered; ignoring low-level relations such as the 
aggregation from Transaction to Account. The rule thus defines that consistency is 
ensured if none of the classes attached to the relation have realizations themselves. 
The generalization from Cash to Payment in Figure 3 violates this rule. This generali-
zation neither has an abstraction nor a realization trace but its attached class Payment 

                                                           
3  Some qualifier conditions were omitted for brevity (e.g., checking for transformation type) 

since they are not needed here. 
4  For now treat the one-to-many traces as two separate one-to-one traces. We will discuss later 

how to deal with it properly. 
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has a realization trace5. This example implies that the high-level diagram does not 
represent the relationship to Cash or that traceability about it is unknown. 

 

3. Destination direction/navigability of relation does not match abstract relation: 
∀ r ∈ relations, interpretation(r)≠null ∧ 
type(interpretation(r))=type(r) ⇒ [size(r->destClass ÷  
realization(interpretation(r)->destClass))=0] 

Rule 3 defines that for two relations to be consistent they ought to be pointing in 
the same directions (same destination classes). This rule applies to relations that have 
interpretations and to relations that have the same type. It defines that the realization 
“r” must have the same destination classes as the realizations of the interpretation’s 
destination classes. A destination class here is a class at the end of a relation’s arrow-
head (e.g., Hotel for reservation_for). This rule applies to the two relations reserva-
tion_for and stays_at only (the relation makes is ruled out since the qualifier requires 
relations to be of the same type).  

Ambiguous Reasoning 

Comparison is not sufficient to establish consistency correctly. Rule 3 applied to the 
realization relations reservation_for and stays_at results in consistency being true for 
both cases. This is misleading because the traceability is ambiguous in that the two 
high-level (realization) relations point to the same two interpretations (labeled (A) 
and (B) in Figure 3). The problem is caused by the lack of traceability. Our approach 
addresses this problem by hypothesizing that at least one of the potentially many 
choices ought to be consistent. Thus, comparison attempts to find one interpretation 
for reservation_for and one for stays_at that is consistent. If no interpretation is con-
sistent then there is a clear inconsistency in the model. If exactly one interpretation is 
consistent then this interpretation must be the missing trace (otherwise there would be 
an inconsistency). Finally, if more than one interpretation is consistent then the situa-
tion remains ambiguous (although potentially less ambiguous since inconsistent in-
terpretations can still be eliminated as choices). Should more than one consistency 
rule apply to a model element then all of them need to be satisfied. Each constraint 
may thus exclude any inconsistent interpretation it encounters. 

For instance, in case of the relation reservation_for, our approach compares it with 
both interpretations (A) and (B). It finds rule 3 to be inconsistent if the relation 
reservation_for is compared to interpretation (A); and it finds the rule to be consistent 
if it is compared to (B). Our approach thus eliminates the trace to interoperation (A) 
as being incorrect (obviously it leads to inconsistency which cannot be correct). What 
remains is an ideal, one-to-one mapping. Our approach then does the same for the 
realization stays_at with the result this it is also inconsistent with interpretation (A) 
and consistent with interpretation (B). Again, the trace to the inconsistent interpreta-
tion is removed.  

                                                           
5  It is outside the scope of this paper to discuss the workings of our reduced redundancy model 

which treats derivatives like Payment together with PaymentTransaction as “one element.” 
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Ambiguous reasoning must ensure that every realization has exactly one interpre-
tation it does not share with another realization. For example, in the previous two 
evaluations we found exactly one interpretation for both realizations reservation_for 
and stays_at; however, in both cases it is the same interpretation. This violates one-
to-one comparison. Recall that transformation ensures that model elements become 
directly comparable. Every realization must have exactly one interpretation. To re-
solve this problem we have to identify the conflicting use of the same interpretations: 
this is analogous to the resource allocation problem which handles the problem on 
how to uniquely allocate a resource (resource = interpretation). The maximum flow 
algorithm [5] (Ford-Fulkerson [12]) solves the resource allocation problem effi-
ciently. The algorithm can be applied to undirected graphs (true in our case since 
traceability links are undirected) where the algorithm guarantees a maximum match-
ing of edges (traces) without the same vertex (model elements) being used twice. In 
short, the maximum-bi-partite-matching problem can be used to avoid the duplicate 
use of interpretations. In the previous example, the algorithm is not able to find a 
solution that satisfies both realizations. It thus detects an inconsistency. 

It must be noted at this point that our ambiguity resolution mechanism has an ele-
ment of randomness in that the outcome may vary if the order, in which model ele-
ments are validated, differs. As such, the maximum bi-partite algorithm will use in-
terpretation (B) for either stays_at or reservation_for and report a resource conflict 
(~inconsistency) for the other.  

In summary, validating the consistency among model elements potentially encoun-
ters three situations as depicted in Figure 4. Situation (a) is the most simplistic one 
where there is a one-to-one mapping between interpretation (I) and realization (R). 
The example discussed in Rule 1 above showed such a case. Situation b) corresponds 
to the example we discussed with Rule 2 where we encountered a low-level interpre-
tation (low-level relation) that had no abstraction. The reverse is also possible where 
there is a high-level realization that has no refinement. While discussing Rule 3 with 
its ambiguity example, we encountered situation c) where one realization had two or 
more interpretations (one-to-many mapping). This scenario required the validation of 
consistency on all interpretations (OR condition). Traces to inconsistent interpreta-
tions were removed and the maximum-partite algorithm was used to find a configura-
tion that resolved all remaining ambiguities randomly.  

 

R I

or

R IR/I I/R

a) c)b)

none

 
Fig. 4. Basic Comparison Rules for Ambiguity 
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5   Discussion 

Scope 
In addition to the (in)consistency rules presented in this paper, we identified almost 
20 more that apply to refinement [8]. Figure 5 (bottom left) shows an excerpt of in-
consistencies between the diagrams in Figure 2 as generated by our tool 
UML/Analyzer. Our tool is also integrated with Rational Rose® which is used as a 
graphical front-end. The right side depicts the complete derived abstraction of the 
low-level diagram (Figure 2). Partially hidden in the upper left corner of Figure 5 is 
the UML/Analyzer main window, depicting the repository view of our example. 
Besides inconsistency messages, our tool also gives extensive feedback about the 
model elements involved. For instance, in Figure 5 one inconsistency is displayed in 
more detail, revealing three low-level model elements (e.g., Reservation) as the po-
tential cause of the inconsistency. We also identified around 40 additional inconsis-
tency types between other types of UML diagrams [8] (sequence and state chart dia-
grams) and the non-UML language C2SADEL [10].  

Accuracy (True Inconsistencies/False Inconsistencies) 
An important factor on how to estimate the accuracy of any consistency checking 
approach is in measuring how often it provides erroneous feedback (e.g., report of 
inconsistencies were there are none or missing inconsistencies). As any automated 
inconsistency detection approach, our approach may not produce correct results at all 
times. However, our approach provides means of evaluating the level of “trust” one 
may have in its feedback. For instance, in Table 1 we presented abstraction rules and 

 

Fig. 5. UML/Analyzer tool depicting inconsistencies 
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commented that each rule has a reliability number. Our approach also uses those 
numbers to derive an overall estimation of how accurate the abstraction is. For exam-
ple, in Figure 5 we see that our tool derived a high-level association between Security 
and Hotel and indicated it to be 90% reliable (<<0.9>>) certain that it is correct, indi-
cating high trustworthiness. Another way of indicating accuracy is in the inconsis-
tency feedback itself. For instance, in Figure 5 we see a warning asserting that 
stays_at has multiple ambiguous interpretations followed by another warning indicat-
ing that is_checked_in was removed as a viable interpretation of reservation_for. 
These warnings indicate that one should also investigate the surrounding elements 
due to ambiguity. The accuracy of our approach is improved if (1) transformation is 
more reliable and (2) more trace information is provided.  

Scalability 
In terms of scalability we distinguish computational complexity and manual interven-
tion. Comparison, our actual consistency checking activity is very fast (O(n)) since it 
only requires the one-time traversal of all model elements and a simple comparison. 
Comparison with ambiguous reasoning is also fast since the maximum bi-partite 
algorithm is computationally linear with respect to the number of model elements. 
Naturally, transformation is more complex but its scalability can be improved by 
reusing previously derived model elements (see [9] for a detailed discussion on ab-
straction scalability). This is something a pure comparative consistency checking 
approach could never do. To date we have applied our tool on UML models with up 
to several thousand model elements without problems in computational complexity. 
More significant, however, is the minimal amount of manual intervention required to 
use our approach. For a small problem it is quite feasible to provide sufficient human 
guidance (e.g., more traces, less/no ambiguities), however, for larger systems it is 
infeasible to expect complete model specifications. In that respect, our approach has 
the most significant benefits. We already outlined throughout this paper how partial 
specifications, ambiguities, and even complex many-to-many mappings can be man-
aged successfully by our approach. In case of larger systems this implies substantial 
savings in human effort and cost since complete specifications are often very hard if 
not impossible to generate manually [13]. 

Change Propagation 
Model-based software development has the major disadvantage that changes within 
views have to be propagated to all other views that might have overlapping informa-
tion. Our consistency checking technique supports change propagation in that it 
points out places where views differ. The actual process of updating models, how-
ever, must still be performed manually. Here, transformation may be used as an 
automated means of change propagation (see also [9]). 

Shortcomings of Transformation 
Our approach relies on good transformation techniques. Especially in context of a 
less-than-perfect modeling language, such as the UML, the reliability of transforma-
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tion suffers. Comparison needs to compensate for deficiencies of transformation 
methods to reduce the number of false positives. For example, our approach conser-
vatively identifies methods of abstracted classes where the true set of methods is a 
subset of the transformation result. This transformation deficiency can be addressed 
by comparison checking for a subset of methods instead of the same set. Other 
deficiencies can be addressed similarly. 

6   Related Work 

Existing literature uses transformation for consistency checking mostly as a means of 
converting modeling information into a more precise, formal representation. For 
instance, VisualSpecs [4] uses transformation to substitute the imprecision of OMT (a 
language similar to UML) with formal constructs like algebraic specifications fol-
lowed by analyzing consistency issues in context of that representation; Belkhouche-
Lemus [3] follows along the tracks of VisualSpecs in its use of a formal language to 
substitute statechart and dataflow diagrams; and Van Der Straeten [25] uses descrip-
tion logic to preserve consistency. We also find that formal languages are helpful, 
however, as this paper demonstrated, we also need transformation methods that “in-
terpret” views in order to reason about ambiguities. Neither of their approaches is 
capable of doing that. Furthermore, their approaches create the overhead of a third 
representation.  

Grundy et al.  took a slightly different approach to transformation in context of 
consistency checking. In their works on MViews/JViews [14] they investigated con-
sistency between low-level class diagrams and source code by transforming them into 
a “base model” which is a structured repository. Instead of reasoning about consis-
tency within a formal language, they instead analyze the repository. We adopted their 
approach but use the standardized UML’s meta model as our repository definition. 
Furthermore, MViews/JViews does not actually interpret models (like the other ap-
proaches above), which severely limits their number of detectable inconsistencies.  

Viewpoints [15] is another consistency checking approach that uses inconsistency 
rules which are defined and validated against a formal model base. Their approach, 
however, emphasizes more “upsteam” modeling techniques; and has not been shown 
to work on partial and ambiguous specifications. Nevertheless, Viewpoints also ex-
tends our work in that it addresses issues like how to resolve inconsistencies or how 
to live with them; aspects which are considered outside the scope of this paper. 

Koskimies et al. [18] and Keller et al. [17] created transformation methods for se-
quence and state chart diagrams. It is exactly these kinds of transformations we need; 
in fact, we adopted Koskimies et al.’s approach as part of ours. Both transformation 
techniques, however, have the drawback that they were never integrated with a con-
sistency checking approach. This limits their techniques for transformation only. 
Also, as transformation techniques they have the major drawbacks that extensive 
specifications and/or human intervention are needed while using them. This is due to 
the inherent differences between state charts and sequence diagrams. Ehrig et al. [11] 
also emphasizes model transformation. In their case they take collections of object 
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diagrams and reason about their differences. They also map method calls to changes 
in their object views, allowing them to reason about the impact methods have.  Their 
approach has, however, only been shown to work for a single type of view and they 
also have also not integrated their approach into a consistency checking framework. 

Our work also relates to the field of transformational programming [20,22]. We 
have proposed a technique that allows systematic and consistent refinement of models 
that, ultimately, may lead to code. The main differences between transformational 
programming and our approach are in the degrees of automation and scale. Transfor-
mational programming is fully automated, though its applicability has been demon-
strated primarily on small, well-defined problems [22]. Our refinement approach, on 
the other hand, can be characterized only as semi-automated; however, we have ap-
plied it on larger problems and a more heterogeneous set of models, typical of real 
development situations. 

SADL [21] follows a different path in formal transformation and consistency. This 
approach makes use of a proof-carrying formal language that enables consistent re-
finement without human intervention. The SADL approach is very precise, however, 
has only been shown to work on their language. It remains unknown whether a more 
heterogeneous set of models can be also refined via this approach. Also, the SADL 
approach has only been used for small samples using small refinement steps. 

Besides transformation, another key issue of consistency checking is the traceabil-
ity across modeling artifacts. Traceability is outside the scope of this work but, as this 
paper has shown, it is very important. Capturing traces is not trivial, as researchers 
have recognized [13], however, there are techniques that give guidance. Furthermore, 
process modeling is also outside the scope, although we find it very important in the 
context of model checking and transformation. To date, we have shown that a high 
degree of automation is possible, but have not reached full automation yet. Processes 
are important since they must take over wherever automation ends [19,23]. 

7   Conclusion 

This paper presented a transformation-based consistency checking approach for con-
sistent refinement and abstraction. Our approach separates model validation into the 
major Mapping (Traceability), Transformation, and Comparison which may be ap-
plied iteratively throughout the software development life cycle to adapt and evolve 
software systems. To date, our approach has been applied successfully to a number of 
third party models including the validation of a part of a Satellite Telemetry Process-
ing, Tracking, and Commanding System (TT&C) [2], the Inter-Library Loan System 
[1] as well as several reverse-engineered tools (including UML/Analyzer itself).  

We invented and validated our abstraction technique in collaboration with Rational 
Software. Our consistency checking approach is fully automated and tool supported. 
Our approach is also very lightweight since it does not require the use of third-party 
(formal) languages [4,15,21] but instead integrates seamlessly into existing modeling 
languages. We demonstrated this in context of the Unified Modeling Language and 
C2SADEL. 
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Abstract. Cohesion is an internal software attribute representing the
degree to which the components are bound together within a software
module. Cohesion is considered to be a desirable goal in software devel-
opment, leading to better values for external attributes such as maintain-
ability, reusability, and reliability. Aspect-oriented software development
(AOSD) is a new technique to support separation of concerns in software
development. AOSD introduces a new kind of component called aspect
which is like a class, also consisting of attributes (aspect instance vari-
ables) and those modules such as advice, introduction, pointcuts, and
methods. The cohesion for such an aspect is therefore mainly about how
tightly the attributes and modules of aspects cohere. To test this hypoth-
esis, cohesion measures for aspects are needed. In this paper, we propose
an approach to assessing the aspect cohesion based on dependence anal-
ysis. To this end, we present various types of dependencies between at-
tributes and/or modules in an aspect, and the aspect dependence graph
(ADG) to explicitly represent these dependencies. Based on the ADG,
we formally define some aspect cohesion measures. We also discuss the
properties of these dependencies, and according to these properties, we
prove that these measures satisfy the properties that a good measure
should have.

1 Introduction

Aspect-oriented software development (AOSD) is a new technique to support
separation of concerns in software development [2,12,13,14]. The techniques of
AOSD make it possible to modularize crosscutting aspects of a system. Aspects
in AOSD may arise at any stage of the software life cycle, including requirements
specification, design, implementation, etc. Some examples of crosscutting aspects
are exception handling, synchronization, and resource sharing.

The current research so far in AOSD is focused on problem analysis, software
design, and implementation techniques. However, efficient evaluations of this
new design technique in a rigorous and quantitative fashion are still ignored
during the current stage of the technical development. For example, it has been
frequently claimed that applying an AOSD method will eventually lead to quality
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software, but unfortunately, there is little data to support such claim. Aspect-
oriented software is supposed to be easy to maintain, reuse, and evolve, yet few
quantitative studies have been conducted, and measures to quantify the amount
of maintenance, reuse, and evolution in aspect-oriented systems are lacking. In
order to verify claims concerning the maintainability, reusability, and reliability
of systems developed using aspect-oriented techniques, software measures are
required.

As with procedural and object-oriented software, we should also relate aspect-
oriented structural quality to some critical process attributes concerning software
maintainability, reusability, and reliability. We therefore need appropriate mea-
sures of aspect-oriented structure to begin to relate structure to process. Re-
cently, Zhao developed a suite of dependence-based structural measures which
are specifically designed to quantify the information flows in aspect-oriented
software [16].

Cohesion is a structural attribute whose importance is well-recognized in
the software engineering community [4,8,15]. Cohesion is an internal software
attribute representing the degree to which the components are bound together
within a software module. Cohesion is considered to be a desirable goal in soft-
ware development, which may lead to better values for external attributes such
as maintainability, reusability, and reliability. In procedural or object-oriented
paradigm, a highly cohesive component is one with one basic function and is
difficult to be decomposed. Cohesion is therefore considered to be a desirable
goal in software development, leading to better values for external attributes
such as maintainability, reusability, and reliability. A system should have high
cohesion. Recently, many cohesion measures and several guidelines to measure
cohesion of a component have been developed for procedural software [3,11] and
for object-oriented software [6,8,10,4,5].

Aspect-oriented language introduces a new kind of component called aspect
to model the crosscutting concerns in a software system. An aspect with its
encapsulation of state (attributes) and associated modules (operations) such
as advice, introduction, pointcuts, and methods is a different abstraction in
comparison to a procedure within procedural systems and a class within object-
oriented systems. The cohesion of an aspect is therefore mainly about how tightly
the aspect’s attributes and modules cohere.

However, although cohesion has been studied widely for procedural and
object-oriented software, it has not been studied for aspect-oriented software
yet. Since an aspect contains new modules such as advice, introduction, and
pointcuts that are different from methods in a class, existing class cohesion mea-
sures can not be directly applied to aspects. Therefore, new measures that are
appropriate for measuring aspect cohesion are needed.

In this paper, we propose an approach to assessing the aspect cohesion based
on dependence analysis. To this end, we present various types of dependencies
between attributes and/or modules such as advice, introduction, pointcuts, and
methods of an aspect, and a dependence-based representation called aspect de-
pendence graph (ADG) to represent these dependencies. Based on the ADG, we
formally define some aspect cohesion measures. We also discuss the properties
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of these dependencies, and according to these properties, we prove that these
measures satisfy the properties that a good measure should have.

We hope that by studying the ideas of aspect cohesion from several different
viewpoints and through well developed cohesion measures, we can obtain a better
understanding of what the cohesion is meant in aspect-oriented paradigm and the
role that cohesion plays in the development of quality aspect-oriented software.
As the first step to study the aspect cohesion, the goal of this paper is to provide
a sound and formal basis for aspect cohesion measures before applying them to
real aspect-oriented software design.

The rest of the paper is organized as follows. Section 2 briefly introduces
AspectJ, a general aspect-oriented programming language based on Java. Section
3 defines three types of dependencies in an aspect and discusses some basic
properties of these dependencies. Section 4 proposes an approach to measuring
aspect cohesion from three facets: inter-attribute, module-attribute and inter-
module. Section 5 discusses some related work. Concluding remarks are given in
Section 6.

2 Aspect-Oriented Programming and AspectJ
We present our basic ideas of aspect cohesion measurement approach for aspect-
oriented programs in the context of AspectJ, the most widely used aspect-
oriented programming language [1]. Our basic ideas, however, deal with the basic
concepts of aspect-oriented programming and therefore apply to the general class
of aspect-oriented languages.

AspectJ [1] is a seamless aspect-oriented extension to Java. AspectJ adds to
Java some new concepts and associated constructs. These concepts and associ-
ated constructs are called join point, pointcut, advice, introduction, and aspect.

Aspect is a modular unit of crosscutting implementation in AspectJ. Each
aspect encapsulates functionality that crosscuts other classes in a program. An
aspect is defined by aspect declaration, which has a similar form of class decla-
ration in Java. Similar to a class, an aspect can be instantiated and can contain
state and methods, and also may be specialized in its sub-aspects. An aspect
is then combined with the classes it crosscuts according to specifications given
within the aspect. Moreover, an aspect can introduce methods, attributes, and
interface implementation declarations into types by using the introduction con-
struct. Introduced members may be made visible to all classes and aspects (pub-
lic introduction) or only within the aspect (private introduction), allowing one
to avoid name conflicts with pre-existing members.

The essential mechanism provided for composing an aspect with other classes
is called a join point. A join point is a well-defined point in the execution of a
program, such as a call to a method, an access to an attribute, an object ini-
tialization, exception handler, etc. Sets of join points may be represented by
pointcuts, implying that such sets may crosscut the system. Pointcuts can be
composed and new pointcut designators can be defined according to these com-
binations. AspectJ provides various pointcut designators that may be combined
through logical operators to build up complete descriptions of pointcuts of in-
terest. For a complete listing of possible designators one can refer to [1].
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public class Point {
  protected int x, y;
  public Point(int _x, int _y) {
    x = _x;
    y = _y;
  }
  public int getX() {
    return x;
  }
  public int getY() {
    return y; 
  }
  public void setX(int _x) {
    x = _x; 
  }
  public void setY(int _y) {
    y = _y; 
  }
  public void printPosition() {
    System.out.println("Point 
                   at("+x+","+y+")");
  }
  public static void main(String[] args) {
    Point p = new Point(1,1);
    p.setX(2);
    p.setY(2);
  }
}

aspect PS_Protocol {
  private int shadowCount = 0;
  public static int getCount() {
    return PS_Protocol.aspectOf().shadowCount;
  }
  private Shadow Point.shadow;
  public static void associate(Point p, Shadow s){
    p.shadow = s;
  }
  public static Shadow getShadow(Point p) {
    return p.shadow;
  }

  pointcut setting(int x, int y, Point p): 
    args(x,y) && call(Point.new(int,int));
  pointcut settingX(Point p): 
    target(p) && call(void Point.setX(int));
  pointcut settingY(Point p): 
    target(p) && call(void Point.setY(int));

  after(int x, int y, Point p) returning : 
    setting(x, y, p) {
    Shadow s = new Shadow(x,y);
    associate(p,s);
    shadowCount++;
  }
  after(Point p): settingX(p) {
    Shadow s = new getShadow(p);
    s.x = p.getX() + Shadow.offset;
    p.printPosition();
    s.printPosition();
  }
  after(Point p): settingY(p) {
    Shadow s = new getShadow(p);
    s.y = p.getY() + Shadow.offset;
    p.printPosition();
    s.printPosition();
  }
}
  

class Shadow {
  public static final int offset = 10;
  public int x, y;
               
  Shadow(int x, int y) {
    this.x = x;
    this.y = y;
  public void printPosition() {
    System.outprintln("Shadow at 
           ("+x+","+y+")");
  }
}

Fig. 1. A sample AspectJ program.

An aspect can specify advice that is used to define some code that should be
executed when a pointcut is reached. Advice is a method-like mechanism which
consists of code that is executed before, after, or around a pointcut. Around
advice executes in place of the indicated pointcut, allowing a method to be
replaced.

An AspectJ program can be divided into two parts: base code part which
includes classes, interfaces, and other language constructs for implementing the
basic functionality of the program, and aspect code part which includes aspects
for modeling crosscutting concerns in the program. Moreover, any implementa-
tion of AspectJ should ensure that the base and aspect code run together in
a properly coordinated fashion. Such a process is called aspect weaving and in-
volves making sure that applicable advice runs at the appropriate join points.
For detailed information about AspectJ, one can refer to [1].
Example. Fig. 1 shows an AspectJ program that associates shadow points with
every Point object. The program contains one aspect PS_Protocol and two
classes Point and Shadow. The aspect has three methods getCount, associate
and getShadow and three pieces of advice related to pointcuts setting, settingX
and settingY respectively1. The aspect also has two attributes, i.e., shadowCount
which is an attribute of the aspect itself and shadow which is an attribute that
is privately introduced to class Point.

1 Since advice in AspectJ has no name. So for easy expression, we use the name of a
pointcut to stand for the name of advice it associated with.
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In the rest of the paper, we use this example to demonstrate our basic ideas
of aspect cohesion measurement. We also assume that an aspect is composed of
attributes (aspect instance variables), and modules2 such as advice, introduction,
pointcuts and methods.

3 Aspect Dependencies

In this section we define various types of dependencies between modules and/or
attributes in an aspect and discuss some properties of these dependencies.

3.1 Dependence Definitions

We define three types of dependencies between attributes and/or modules in an
aspect, that is, inter-attribute, inter-module, and module-attribute dependence.

Definition 1. Let a1, a2 be attributes in an aspect. a2 is inter-attribute de-
pendent on a1, denoted by a2 ↪→ a1, if one of the following conditions holds:

– The definition of a2 uses (refers) a1 directly or indirectly, or
– Whether a2 can be defined is determined by the state of a1.

Generally, if a2 is used in the condition part of a control statement (such as
if and while), and the definition of a1 is in the inner statement of the control
statement, then the definition of a1 depends on the state of a2. For example,
according to Definition 1, we know that there is no inter-attribute dependence
in aspect PS_Protocol of Fig. 1.

There are two types of dependencies between aspect modules: inter-module
call dependence and inter-module potential dependence.

Definition 2. Let m1, m2 be two modules and a be an attribute in an aspect. m2
is inter-module-dependent on m1, denoted by m2 → m1, if one of the following
conditions holds:
– m1 is called in m2. (inter-module call dependence)
– a is used in m2 before it is defined, and a is defined in m1. (inter-module

potential dependence)

Given an aspect, we can not assume which piece of introduction or which
method in the aspect might be invoked before another3. So we assume that all
the introduction and methods in the aspect can be invoked at any time and in
any order. Therefore, if m2 might use an attribute a, and a is defined in m1,
and if m1 is invoked first and then m2 is invoked, then m2 might use a defined
in m1, i.e. m2 is inter-module potentially-dependent on m1.
2 For unification, we use the word “module” to stand for a piece of advice, a piece of

introduction, a pointcut, or a method declared in an aspect.
3 In AspectJ, advice is automatically woven into some methods in a class by the

compiler, and therefore no call exists for the advice.
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To obtain the inter-module dependencies, for each module m, we introduce
two sets, DIN and DOUT , where DIN (m) is the set of attributes referred before
modifying their values in m, and DOUT (m) is the set of attributes modified in
m. Thus, for an attribute a and modules m and m′, if a ∈ DIN (m′)∩DOUT (m),
then m′ → m.

In addition to attributes, since there are four types of different modules in
an aspect, i.e., advice, introduction, pointcuts and methods, there may have the
following possible types of inter-module dependencies, i.e., dependencies between
advice and advice, advice and introduction, advice and method, advice and
pointcut4, introduction and introduction, introduction and method, or method
and method.

Example. In order to compute inter-module dependencies in aspect PS_Protocol,
we first compute the DIN and DOUT sets for each module in PS_Protocol. They
are: DIN (getCount) = {shadowCount}, DOUT (getCount) = ∅, DIN (getShadow) =
{shadow}, DOUT (getShadow) = ∅, DIN (associate) = ∅, DOUT (associate) = {sha
dow}, DIN (setting) = {shadowCount}, DOUT (setting) = {shadowCount}, DIN (set
tingX) = DOUT (settingX) = ∅, DIN (settingY) = DOUT (settingY) = ∅. Also there
exist inter-module dependencies between each pointcut and its corresponding advice.
So we finally get the following inter-module dependencies in PS_Protocol.
(method getCount → advicesetting), (advice setting → method associate), (advice
settingX → method getShadow), (advice settingY → advice getShadow), (pointcut
setting → advice setting), (pointcut settingX → advice settingX), and (pointcut
settingY → advice settingX).

Definition 3. Let m be a module and a be an attribute in an aspect. m is
module-attribute-dependent on a, denoted by m �→ a, if a is referred in m.

Since there are four types of different modules in an aspect, module-attribute
dependencies may have four different types: advice-attribute, introduction-attri-
bute, pointcut-attribute, or method-attribute dependencies.

Example. According to Definition 3, the module-attribute dependencies in
aspect PS_Protocol are: (method getCount → attribute shadowCount), (method
getShadow → attribute shadowCount), (advice settingX → attribute shadowCount).

Note that all these types of dependencies defined above can be derived by
performing control flow and data flow analysis using existing flow analysis algo-
rithms [17]. Due to the space limitation, we do not discuss this issue here.

3.2 Dependence Properties

This section discusses some properties of dependencies defined in Section 3.1,
and refines the definition of inter-module dependence to fit for measuring aspect
cohesion.
4 A pointcut is only related to its corresponding advice. Therefore, there is no de-

pendence between pointcut and method, pointcut and introduction, or pointcut and
pointcut.
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According to definition 1, if a1 ↪→ a2 and a2 ↪→ a3, then a1 ↪→ a3. Therefore,
we have

Property 1. The inter-attribute dependencies are transitive.

Based on Property 1, we can define the inter-attribute transitive dependence
as follows.

Definition 4. Let A be an aspect and ai (i > 0) be attributes in A. If there
exist attributes a1, a2, . . . , an−1, an (n > 1), where a1 ↪→ a2, . . ., ai−1 ↪→ ai, . . . ,
an−1 ↪→ an, then a1 is inter-attribute-transitive-dependent on an, denoted by
a1

∗
↪→ an.

According to definition 2, for modules m1, m2, and m3, if m1 → m2 and
m2 → m3, then m1 → m3 may not hold. Consider an example of inter-module
call dependence, if m1 is called in m2 and m2 is called in m3, then m1 is not
necessarily called in m3. For inter-module potential dependence, if m1 → m2
and m2 → m3 are introduced by unrelated, different attributes, then m1 might
have no relation with m3. Therefore, we have

Property 2. The inter-module dependencies are not transitive.

The intransitivity among inter-module dependencies leads to great difficulties
when performing analysis. Thus, we should redefine the inter-module dependen-
cies.

Definition 5. Let m1, m2 be modules and a be an attribute in an aspect. If a
is used in m1 and defined in m2, then a used in m1 is dependent on a defined
in m2, denoted by m1

a,a−→ m2, where <a, a> is named as a tag.

For unification, add a tag <*, *> for each inter-module call dependence arc,
i.e., if m1 is inter-module-call-dependent on m2, then we have m1

∗,∗−→ m2.
Definition 5 is the basic definition. Since the dependencies between attributes

are transitive, we can obtain a more general definition according to Property 3.
To obtain such dependencies, we introduce two sets for each module m of an

aspect, i.e., DA and DAO, each element of which has the form (a, a′), where a
and a′ are attributes of the aspect.

– DA(m) is the set of dependencies which records the dependencies from the
attributes referred in m to the attributes defined out m. DA(m) is a subset
of inter-attribute dependencies.

– DAO(m) is the set of dependencies which records the dependencies from the
attributes referred in m to the attribute defined out m when exiting m.

In general, the intermediate results are invisible outside, and an attribute
might be modified many times in a piece of advice, a piece of introduction,
or a method. We introduce DAO to improve the precision. Obviously, we have
DAO(m) ⊆ DA(m).
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Definition 6. Let m1, m2 be modules and a1, a2 be attributes in an aspect. If
(a1, a2) ∈ DA(m1) and a2 ∈ DOUT (m2), then m1 is dependent on m2, denoted
by m1

a1,a2−→ m2.

According to Definition 6, we have the following properties:

Property 3. Let m1, m2, m3 be modules and a1, a2, a3 be attributes in an aspect.
If m1

a1,a2−→ m2, and ∀(a2, a3), (a2, a3) ∈ DAO(m2) and a3 ∈ DOUT (m3), then
m1

a1,a3−→ m3.

Since DAO(m1) ⊆ DA(m1), according to Definition 6, if (a2, a3) ∈ DAO(m1),
and a3 ∈ DOUT (m2), then m1

a1,a2−→ m3. Thus, we have Corollary 1.

Corollary 1. Let m1, m2, m3 be modules and a1, a2, a3 be attributes in an
aspect. If m1

a1,a2−→ m2 and m2
a2,a3−→ m3, then m1

a1,a3−→ m3.

Property 4. Let m1, m2, m3 be modules and a1, a2 be attributes in an aspect.
If m1

∗,∗−→ m2 and m2
a1,a2−→ m3, then m1

a1,a2−→ m3.

From Properties 2-4, we can define the inter-module transitive dependence
as follows.

Definition 7. Let A be an aspect, mi (i > 0) be modules, and ai (i > 0) be
attributes in A. If there exist modules m1, . . . , mn and attributes a1, . . . , an (n >
1, ai need not be unique, and ai may be “∗′′, which models calls between modules),
where m1

a1,a2−→ m2, . . . , mi−1
ai−1,ai−→ mi, . . . , mn−1

an−1,an−→ mn, then m1 is inter-
module-transitive-dependent on mn, denoted by m1

∗−→ mn.

To present our cohesion measure in a unified model, we introduce the aspect
dependence graph to explicitly represent all types of dependencies in an aspect.

Definition 8. The aspect dependence graph (ADG) of an aspect A is a directed
graph5, GADG = (V, A, T ) where V = Va ∪ Vm, A = Aaa ∪ Amm ∪ Ama, and
T ∈ A× (V ′, V ′) are the sets of vertex, arc, and tag respectively, such that:
– Va is the set of attribute vertices: each represents a unique attribute (the

name of a vertex is the name of the attribute it represents) in A.
– Vm is the set of module vertices: each represents a unique module (the name

of a vertex is the name of the module it represents) in A.
– V ′ is the union of Va and {∗}, i.e., V ′ = Va ∪ {∗}.
– Aaa is the set of inter-attribute dependence arcs that represents dependencies

between attributes, such that for va, va′ ∈ Va if a ↪→ a′, then (va, va′) ∈ Aaa.
– Amm is the set of inter-module dependence arcs that represent dependencies

between modules, such that for vm, vm′ ∈ Vm if m → m′, then (vm, vm′) ∈
Amm.

5 A directed graph G = (V, A), where V is a set of vertices and A ∈ V × V is a set of arcs. Each
arc (v, v′) ∈ A is directed from v to v′; we say that v is the source and v′ the target of the arc.
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– Ama is the set of module-attribute dependence arcs that represents depen-
dencies between modules and attributes, such that for vm ∈ Vm, va ∈ Va if
m �→ a, then (vm, va) ∈ Ama.

Generally, GADG consists of three sub-graphs, i.e., inter-attribute dependence
graph GAAG = (Va, Aaa), module-attribute dependence graph GMAG = (V, Ama),
and inter-module dependence graph GMMG = (Vm, Amm, T ), which can be used
to define the inter-attribute, module-attribute, and inter-module cohesion in an
aspect respectively. Fig. 2 shows the GMAG and GMMG of aspect PS_Protocol.
Since there exists no inter-attribute dependence in the aspect, the GAAG is not
available. Note that we omit the Tags in both graphs for convenience.

getCount

getShadow

Settingshadow

shadowCount

getCount

associate

getShadow

Setting
  (a)

SettingX
  (a)

SettingY
  (a)

(b)(a)

Setting
  (p)

SettingX
   (p)

SettingY
  (p)

Fig. 2. The GMAG (a) and GMMG (b) of the aspect PS Protocol in Fig. 1.

4 Measuring Aspect Cohesion

Briand et al. [4] have stated that a good cohesion measure should have properties
such as non-negative and standardization, minimum and maximum, monotony,
and cohesion does not increase when combining two components. We believe that
these properties provide also a useful guideline even in aiding the development
of an aspect cohesion measure. In this section, we propose our aspect cohesion
measures, and show that our aspect cohesion measures satisfy the properties
given by Briand et al. [4].

An aspect consists of attributes and modules such as advice, introduction,
pointcuts, and methods. There are three types of dependencies between at-
tributes and/or modules. Thus, the cohesion of an aspect should be measured
from the three facets. In the following discussion, we assume that an aspect A
consists of k attributes and n modules, where k, n ≥ 0.

4.1 Measuring Inter-attribute Cohesion

Inter-attribute cohesion is about the tightness between attributes in an aspect.
To measure the inter-attribute cohesion for an aspect A, for each attribute a
of A, we introduce a set Da to record the attributes on which a depends, i.e.,
Da(a) = {a | a1

∗
↪→ a, a1 �= a}. Thus, we define the inter-attribute cohesion of A

as:
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γa(A) =

⎧⎨⎩
0 k = 0
1 k = 1
1
k

∑k
i=1

|Da(ai)|
k−1 k > 1

where k is the number of attributes in A, and |Da(ai)|
k−1 represents the degree on

which ai depends on other attributes in A.
If k = 0, there is no attribute in A. Inter-attribute cohesion is useless, thus

we set γa(A) = 0. If k = 1, there is only one attribute in A. Although it
can not depend on other attribute, it itself is tight, thus we set γa(A) = 1.
If each attribute relates to all others, then γa(A) = 1. If all attributes can exist
independently, then γa(A) = 0. Thus, γa(A) ∈ [0, 1].

Theorem 1. Let A be an aspect and GAAG = (Va, Aaa) be the inter-attribute
dependence graph of A. γa(A) does not decrease when adding an arc (a1, a2) ∈
Aaa, where a1, a2 ∈ Va, on GAAG.

Proof: Let Da(a1) be the set of attributes in A which a1 depends on before adding
an arc. We use D′

a(a1) to represent Da(a1) after adding an arc (a1, a2) to Da(a1).

(1) If a2 ∈ Da(a1), according to the definition of Da, a1 transitively depends on a2,
Da(a1) does not change when adding arc (a1, a2), i.e., Da(a1) = D′

a(a1), γa(A)
keeps unchanged;

(2) If a2 /∈ Da(a1), according to the definition of Da, D′
a(a1) will increase after adding

arc (a1, a2), i.e., D′
a(a1) = Da(a1) ∪ {a2}. For other attributes that depend on

a1, they will transitively depend on a2, after adding arc (a1, a2). In all, γa(A) will
increase.

Therefore, γa(A) does not decrease when adding an arc on GAAG.

Theorem 2. Let A1 and A2 be two aspects and A12 be an aspect derived from
the combination of A1 and A2. Let γa(A1) and γa(A2) be the inter-attribute
cohesions of A1 and A2 respectively and γa(A12) be the inter-attribute cohesion
of A12. γa(A12) ≤ max{γa(A1), γa(A2)}.

Proof: When combining the two aspects, the previous dependencies do not change in
the new aspect, and there is no new dependence added. Let A1 and A2 be two aspects
that have k1 and k2 attributes respectively.

(1) If k1 = k2 = 0, then γa(A12) = γa(A1) = γa(A2) = 0.
(2) If k1 = 1 or k2 = 1, we assume k1 = 1, then γa(A1) = 1. Because this is the

maximum of the cohesion, γa(A12) is no greater than γa(A1).
(3) If k1, k2 > 1, k1 + k2 > k1 and k1 + k2 > k2. For each attribute a1 of A1, we

have |Da(a1)|
k1−1 ≥ |Da(a1)|

k1+k2−1 . For each attribute a2 of A2, we have |Da(a2)|
k2−1 ≥ |Da(a2)|

k1+k2−1 .
Thus, γa(A12) ≤ max{γa(A1), γa(A2)}.

In all the cases above, inter-attribute cohesion does not increase when combining two
aspects.

Example. The Da sets for each module in PS_Protocol are: Da(shadowCount) =
Da(shadow) = ∅. Therefore, γa(PS_Protocol) = 1

2

∑2
i=1

|Da(ai)|
2−1 = 0.
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4.2 Measuring Module-Attribute Cohesion

Module-attribute cohesion is about the tightness between modules and attributes
in an aspect. To measure this kind of cohesion, for each module m in an aspect
A, we introduce two sets: Dma and Do

ma, where
– Dma(m) is the set of all A’s attributes that are referred in m.
– Do

ma(m) is a set of all A’s attributes that are referred in m and related to
attributes referred in other modules, i.e.,
Do

ma(m) = {a | ∃a1, m1 such that ((m1
a1,a−→ m) ∨ (m

a,a1−→ m1)) ∧ (a, a1 �=
′∗′)}.
Obviously, Do

ma(m) ⊆ Dma(m). We can define the module-attribute cohesion
for A as follows:

γma(A) =

⎧⎨⎩
0 n = 0
1 n = 1 and |Dma(mi)| �= 0
1
n

∑n
i=1

|Do
ma(mi)|

|Dma(mi)| others

where n is the number of modules in A, and |Do
ma(mi)|

|Dma(mi)| , denoted by ρ(mi), is the
ratio between the number of attributes which are referred in mi and relevant to
others, to the number of all attributes referred in mi.

For a module m, if Dma(m) = ∅, i.e., no attribute is referred in m, we set
ρ(m) = 0. If the attributes referred in m are not related to other modules, these
attributes can work as local variables. It decreases the cohesion to take a local
variable for a module as an attribute for all modules. If there is no attribute or
module in the aspect, no module will depend on others. There is no Dma or all
the Dma are empty, i.e., |Dma(m)| = 0. Thus, γma = 0. If each attribute referred
in m is related to other modules, then ρ(m) = 1.

Theorem 3. Let A be an aspect and GMMG = (Vm, Amm) be the inter-module
dependence graph of A. Let m1 be a module of A and ρ(m1) = |Do

ma(m1)|
|Dma(m1)| . ρ(m1)

does not decrease when adding an arc (m1, m2), where m1, m2 ∈ Vm, on GMMG.

Proof: Let the arc added have the form m1
a1,a2−→ m2, the attribute set m1 refers is

Dma(m1) before adding the arc, among which the attributes related to other modules
are included in the set Do

ma(m1). They change to D′
ma(m1) and Do

ma
′(m1) after adding

the arc.

(1) If a ∈ Do
ma(m1), according to the definitions, since the two sets do not change

when adding an arc, ρ(m1) does not change.
(2) If a /∈ Do

ma(m1) and a ∈ Dma(m1), Dma(m1) will not be changed when adding
the arc, but Do

ma(m1) will be increased, i.e. Do
ma

′(m1) = Do
ma(m1) ∪ {a}. Thus

ρ(m1) will increase.
(3) If a /∈ Dma(m1), since Do

ma(m1) ⊆ Dma(m1), a /∈ Do
ma(m1). Therefore, the two

sets will increase after adding the arc, i.e., Do
ma

′(m1) = Do
ma(m1) ∪ {a}, and

D′
ma(m1) = Dma(m1)∪{a}. Then |Do

ma
′(m1)| = |Do

ma(m1)|+1, and |D′
ma(m1)| =

|Dma(m1)| + 1. Since |Do
ma(m1)|

|Dma(m1)| ≤ |Do
ma(m1)|+1

|Dma(m1)|+1 , ρ(m1) does not decrease.
(4) If the added arc is an inter-module call dependence arc, we have Do

ma
′(m1) =

Do
ma(m1) ∪ Do

ma
′(m2) and D′

ma(m1) = Dma(m1) ∪ Dma(m2). Applying these re-
lations to cases (1) - (3), we will have the same conclusions.
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Similarly, we can prove the conclusion holds if the arc added is m2
a1,a2−→ m1.

Example. The Dma and Do
ma sets for each module in PS_Protocol are Dma(getShadow)

= {shadow}, Dma(getCount) = Dma(setting) = {shadowCount}, Dma(associate) =
Dma(settingX) = Dma(settingY) = ∅, Do

ma(getCount) = Do
ma(getShadow) = ∅,

Do
ma(associate) = Do

ma(setting) = ∅, and Do
ma(settingX) = Do

ma(settingY) = ∅.
Therefore, γma(PS_Protocol) = 1

6

∑6
i=1

|Do
ma(mi)|

|Dma(mi)| = 0.

4.3 Measuring Inter-module Cohesion

In the GMMG, although the modules can be connected by attributes, this is not
necessary sure that these modules are related. If there does exist some relations
between modules, we should determine their tightness. This is the process to
measure the inter-module cohesion. To do this, we introduce another set Dm for
each module m in an aspect A, where Dm(m) = {m2 | m1

∗−→ m2}.
The inter-module cohesion γm(A) for A is defined as follows:

γm(A) =

⎧⎨⎩
0 n = 0
1 n = 1
1
n

∑n
i=1

|Dm(mi)|
n−1 n > 1

where n is the number of modules in A and |Dm(mi)|
n−1 represents the tightness

between mi and other modules in A. If each module depends on all other mod-
ules, then γm(A) = 1. If all modules are independent, i.e., each module has no
relation with any other modules, then γm(A) = 0.

Theorem 4. Let A be an aspect, GMMG = (Vm, Amm) be the inter-module
dependence graph of A. The inter-module cohesion γm(A) does not decrease when
adding an arc (m1, m2) ∈ Amm, where m1, m2 ∈ Vm, on GMMG.

Theorem 5. Let A1 and A2 be aspects and A12 be an aspect derived from the
combination of A1 and A2. Let γm(A1) and γm(A2) be the inter-module cohesions
of A1 and A2 and γm(A12) be the inter-module cohesion of A12. γm(A12) ≤
max{γm(A1), γm(A2)}.

We can prove Theorems 4 and 5 with a similar way as we did for Theorems
1 and 2. Due to the limitation of the space, we do not repeat them here.

Example. The Dm sets for each module in PS_Protocol are: Dm(getCount) =
{setting}, Dm(getShadow) = {shadow}, Dm(setting) = {associate}, Dm(settingX)
= {getShadow}, and Dm(settingY) = {getShadow}. Therefore, γm(PS_Protocol) =
1
6

∑6
i=1

|Dm(mi)|
|6−1| = 1

6 .

4.4 Measuring Aspect Cohesion

After measuring the three facets of aspect cohesion independently, we have a
discrete view of the cohesion of an aspect. We have two ways to measure the
aspect cohesion for an aspect A:
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(1) Each measurement works as a field. The aspect cohesion for A is a 3-tuple
as Γ (A) = (γa, γma, γm).

(2) Integrating the three facets as a whole. Let x = β1 ∗ γa + β2 ∗ γma + β3 ∗ γm,
the aspect cohesion for A is computed as follows.

Γ (A) =

⎧⎨⎩ 0 n = 0
β ∗ γm k = 0 and n �= 0
x others

where k is the number of attributes and n is the number of modules in A,
β ∈ (0, 1], β1, β2, β3 > 0, and β1 + β2 + β3 = 1.

If k = 0 and n �= 0, Γ (A) describes only the tightness of the call relations,
thus we introduce a parameter β to constrain it. For other cases, we introduce
three parameters β1, β2, and β3 to constrain it. The selection of β1, β2, and β3
is determined by users.

Example. The aspect cohesion of PS_Protocol can be computed based on its γa, γma,
and γm. If we set β1 = β2 = β3 = 1

3 , we have Γ (PS_Protocol) = 1
3 ∗γa(PS_Protocol)+

1
3 ∗ γma(PS_Protocol) + 1

3 ∗ γm(PS_Protocol) = 1
18 .

5 Related Work

We discuss some related work that directly or indirectly influences our work pre-
sented in this paper. To the best of our knowledge, our work is the first attempt
to study how to assess the cohesion of aspects in aspect-oriented software.

The approaches taken to measure cohesiveness of procedural programs have
generally tried to evaluate cohesion on a procedure (function) by procedure
(function) basis. Bieman and Ott [3] propose an approach to measuring the
cohesion on procedures based on a relation between output tokens (output vari-
ables) and program slices. Kang and Bieman [11] investigate to measure cohesion
at the design level for the case that the code has yet to be implemented. Since
aspects are more complex and significantly different abstractions in comparing
with procedures (functions), These measures definitely fails to be applied to
aspects.

Most existing approaches for class cohesion measurement consider the inter-
actions between methods and/or attributes in a class. Chidamber and Kemerer
[8] propose the Lack of Cohesion Measure (LCOM) to assess class cohesion based
on the similarity of two methods in a class. Hitz and Montazeri [10] propose an
extension to the LCOM of Chidamber and Kemerer by making it more sensitive
to small changes in the structure of a class. Chae, Kwon, and Bae [6] propose a
class cohesion measure for object-oriented system by introducing a new notion
called glue methods. In contrast to the above cohesion measurement approaches
that only consider the interaction between methods and/or attributes, Chen et
al. [7] propose an approach to measuring class cohesion based on the interactions
between attributes and/or methods in a class. Although their work is similar to
ours, we see our work differing from theirs because our approach can handle
interactions between attributes and those modules such as aspect advice, intro-
duction, and pointcuts that are unique constructs for aspect-oriented programs.
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Based on these new types of interactions we propose a new dependence model
for aspects that is different from the dependence model presented by Chen et
al. [7].

Zhao [16] proposes a metrics suite for aspect-oriented software, which are
specifically designed to quantify the information flows in aspect-oriented pro-
grams. To this end, Zhao presents a dependence model for aspect-oriented soft-
ware which is composed of several dependence graphs to explicitly represent
dependence relationships in a module, a class, or the whole program. Based on
the model, Zhao defines some metrics to measure the complexity of an aspect-
oriented program from various different viewpoints and levels. However, Zhao
does not address the issue of aspect cohesion measurement.

The development of coupling measures for aspect-oriented software is also
considered by Zhao who proposes an approach to assessing the coupling
of aspect-oriented software based on the interactions between aspects and
classes [18].

Dufour et al. [9] proposes some dynamic metrics for AspectJ, which focuses
on the performance and execution time costs, rather than structural complexity
of aspect-oriented software.

6 Concluding Remarks

In this paper, we proposed an approach to measuring the cohesion of aspects in
aspect-oriented software based on dependence analysis. We discussed the tight-
ness of an aspect from three facets: inter-attribute, module-attribute and inter-
module. These three facets can be used to measure the aspect cohesion indepen-
dently and also can be integrated as a whole. We also discussed the properties of
these dependencies and according to these properties we proved that our cohesion
measures satisfy some properties which a good measure should have. Therefore,
we believe our approach may provide a solid foundation for measuring aspect
cohesion.

The aspect cohesion measures proposed in this paper focused only on the
features of an aspect itself, and did not take its application environment into
account. When do so, there will be a little difference because the modules in
the aspect may be invoked in a set of given sequences, which is a subset of the
arbitrary combination. For such a case, we should analyze the definitions and
uses of attributes in the context of the applications. Also, in this paper we did
not distinguish the connected and non-connected graphs and did not consider to
measure the cohesion of a derived aspect (i.e., aspect inheritance). In our future
work, we will study the influence of aspect inheritance and other aspect-oriented
features on aspect cohesion, and apply our cohesion measure approach to real
aspect-oriented software design.
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Abstract. Object-Z offers an object-oriented means for structuring for-
mal specifications. We investigate the application of refactoring rules
to add and remove structure from such specifications to forge object-
oriented designs. This allows us to tractably move from an abstract
functional description of a system toward a lower-level design suitable
for implementation on an object-oriented platform.

1 Introduction

Previous research added object orientation to specification languages to take ad-
vantage of the modularity and structure benefits that this approach offers. Whilst
this has been achieved with formalisms such as Object-Z [22], VDM++ [11], and
Z++ [11], which are built upon existing well-defined languages, there is not yet a
practical process for turning these functional specifications into well-structured
object-oriented software. This seems like an intuitively appropriate goal for such
specification languages, as their semantics already closely model that of object-
oriented programming languages.

There are two major aspects such a process must encompass. First, at a high
level, a purely functional specification must be reorganised and refined to create
a reasonable object-oriented design. Second, at a lower level, the object-oriented
design must be further refined to object-oriented code.

We focus on the higher level objective: moving from an abstract functional
specification in Object-Z to a specification of an object-oriented design. We
achieve this by systematically modifying the specification to introduce design,
taking advantage of rules that are similar to the refactoring [6,18] rules presented
by Fowler [6]. Although we borrowed the term, our approach slightly differs from
the normal interpretation of refactoring as the process of improving an existing
design.

Fowler extensively catalogued object-oriented refactoring rules, but made
no attempt to formalise the rules or the process of introducing them. Corne-
lio et al. [4], however, specified a set of Fowler’s refactoring steps as rules in the
ROOL programming language which were verified using a weakest precondition
semantics.

Our idea differs from these approaches as we move from an abstract specifi-
cation to an object-oriented design without the need to consider irrelevant detail
at the programming-language level. Also, the ROOL language does not have a

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 69–83, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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reference-based model of object identity. Object references are necessary to im-
plement certain design patterns and architectures and are an integral part of
many widely-used object-oriented programming languages like Java and C++.
In addition to this, our approach differs from others as it has the primary pur-
pose of introducing a design into a specification rather than simply modifying
an existing implementation.

In this paper we show that significant structural object-oriented design can
be introduced at the specification level, in Object-Z, utilising two rules. One
rule adds structure to the specification, whilst another rule removes structure.
When combined with non-structural refactoring steps our approach a powerful
method for the incremental introduction of specification-based structural de-
sign in Object-Z. Since the rules are behaviour-preserving, this process ensures
that any software design produced will be correct with respect to the original
specification.

2 Related Work

Refactoring is a relatively new idea as applied to object-oriented programming
languages, but the systematic transformation of formal specifications to resemble
programs, particularly in the non-object-oriented domain, is certainly not a new
idea [13,17].

However, formal and incremental class reorganisation in object-oriented lan-
guages was discussed by Casais [3] and also by Mikhajlova and Sekerinski [15],
who propose a class refinement semantics for object-oriented specification lan-
guages based upon data refinement. This involves the interpretation of subclasses
as subtypes, this semantic definition going beyond the Object-Z interpretation of
inheritance as strongly syntax-based [21]. This approach, however, does simplify
refinement a great deal — as in VDM++ and Z++ [11] — but restricts the ease
of expression in the languages because it inhibits reuse of syntactic definition.

Other investigations into modifying class structure in a formal context were
made by Bonsangue et al. [1,2]. Here, object orientation was modelled by extend-
ing the action system formalism to support objects and classes. This formalism
differs from Mikhajlova and Sekerinski’s, even though it has the same interpre-
tation of inheritance, as it considers the addition of methods when subclassing.
However, it still considers inheritance as a form of subtyping.

There is significant work in this field in the VDM++ language, where Lu [12]
initially proposed that classes could be decomposed as a refinement step to
introduce structure. Goldsack and Lano [7,10] built upon this work to introduce
and formalise annealing for decomposing classes in a VDM++ specification. The
problem of invariant distribution in the decomposition process became the focus
of their work, and a complete approach to specification-based object-oriented
design was not developed.
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3 Motivating Example: Battleship

The game of “Battleship” was chosen as a motivating example. Two players are
required, and the game begins by presenting each player with a blank grid con-
sisting of twelve rows and twelve columns. Each player then secretly places a fleet
of five ships on the grid. Each ship is a different length ranging from occupying
one cell to five cells, and may be placed either horizontally or vertically.

Players then alternate attempts to sink their opponent’s ships by posing a
query to their opponent as to whether a certain cell in the opponent’s playing
grid is occupied by a ship or not (this is analogous to firing a missile). Their
opponent responds with either: hit, miss, ship sunk, or fleet destroyed. A ship is
considered sunk when every cell it occupies in the grid has been guessed by the
opposing player. A fleet is considered destroyed when all five ships are sunk and
the game ends.

In Figure 1 we present a specification of the game written in Object-Z. The
class System represents the two players in terms of their guesses (guessesP1 and

COORDINATE == 1 . . 12 × 1 . . 12
SHIP ::= destroyer | submarine | cruiser | battleship | carrier
RESPONSE ::= hit | miss | sink | fleet destroyed
FLEETBOARD == COORDINATE  → SHIP
GUESSBOARD == COORDINATE  → RESPONSE

System
�(INIT, InitFleetP1, InitFleetP2,FireAtP1,FireAtP2)

guessesP1 : GUESSBOARD
guessesP2 : GUESSBOARD
fleetP1 : FLEETBOARD
fleetP2 : FLEETBOARD

INIT

guessesP1 = ∅

guessesP2 = ∅

fleetP1 = ∅

fleetP2 = ∅

InitFleetP1
Δ(fleetP1)
fleet? : FLEETBOARD

fleetP1′ = fleet?

InitFleetP2
Δ(fleetP2)
fleet? : FLEETBOARD

fleetP2′ = fleet?

FireAtP1
Δ(fleetP1, guessesP2)
guess? : COORDINATE

guess? �∈ dom guessesP2
fleetP1′ = fleetP1 −� {guess?}
guessesP2′ =
guessesP2 ∪ {guess? →
if fleetP1′ ⊂ fleetP1 then
if ran fleetP1′ ⊂ ran fleetP1 then
if fleetP1′ = ∅ then

fleet destroyed
else sink else hit else miss}

FireAtP2
Δ(fleetP2, guessesP1)
guess? : COORDINATE

guess? �∈ dom guessesP1
fleetP2′ = fleetP2 −� {guess?}
guessesP1′ =
guessesP1 ∪ {guess? →
if fleetP2′ ⊂ fleetP2 then
if ran fleetP2′ ⊂ ran fleetP2 then
if fleetP2′ = ∅ then

fleet destroyed
else sink else hit else miss}

Fig. 1. Initial monolithic Battleship specification.
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guessesP2) and fleet positions (fleetP1 and fleetP2). Each player provides the
initial placement of their ships on the game board using the InitFleeetP1 and
InitFleetP2 operations. The FireAtP1 and FireAtP2 operations specify the be-
haviour of each player taking a turn. The delta-lists, i.e., lists of the form Δ(. . .),
identify which state variables the operations may change; all other variables are
unchanged.

Our specification is adequate to describe the core functionality of the game,
but does not represent an appropriate object-oriented design. A good object-
oriented design, and indeed a better structured specification, would identify
players as separate objects in the system and encapsulate their functionality;
thus reducing the clear redundancy. This paper describes a means for achieving
this goal via the step-wise application of behaviour-preserving rules.

We shall introduce, in Section 4, the general rules for modifying the structure
of an Object-Z specification. Using these rules, we illustrate their effectiveness
in Sections 5 and 6, showing their application to reflect different design decisions
whilst preserving the specified behaviour.

4 Structural Modification Rules

Our rules below describe syntactic transformations on Object-Z specifications.
The rules rely on class simulation [5] to establish refinement relations between
the two sides of the rules to ensure the preservation of behaviour. Refinement
is interpreted with respect to a class’s external interface, and we allow for the
interface of a class to be widened in the refinement process.

We have proven both of the following rules correct by showing that the
right-hand side is a refinement of the left-hand side using the definitional rules
of Object-Z provided by Smith [22] together with Derrick and Boiten’s class
simulation laws [5]. Proof sketches are provided in Section 4.3.

For a complete approach, it is necessary to consider other rules that do not
modify class structure. Such rules rename variables or operations in classes,
simplify or reorganise operation expressions, or involve other equivalence trans-
formations that are proven sound using the language definition. These rules are
not elaborated upon for purposes of brevity, but are based upon those presented
by Cornelio et al. [4] and Fowler [6].

In the following sections we present the Annealing rule for introducing class
structure, and the Coalescence rule for eliminating class structure.

4.1 Annealing

The annealing rule allows for the decomposition of one class into two, effectively
partitioning its data and functionality. It is similar in intention to Fowler’s Ex-
tract Class refactoring [6,4], which performs the same function at the program-
ming language level. The annealing rule is fundamental for introducing structure
as part of the process of moving from specification towards design. In Figure 2,
class A on the left-hand side is annealed to create the classes A1 and B on the
right-hand side.
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A
�(INIT,OpA,OpB)

S
T

INIT

R{S,T}

OpA =̂ [Δ(S) | P{S,S ′,T} ]
OpB =̂ [Δ(T ) | Q{S,T ,T ′} ]

A1

�(INIT,S ,OpA,OpB)

S
component : B
Δ
T

θT = θcomponent .T
component .frame = self

INIT

R{S,T}
component .INIT

OpA =̂ [Δ(S) | P{S,S ′,T} ]
OpB =̂ component .OpB

B
�(INIT, frame,OpB)

T
frame : A1
Δ
S

θS = θframe.S

INIT

R{S,T}

OpB =̂ [Δ(T ) | Q{S,T ,T ′} ]

Fig. 2. Annealing rule.

One class, called the framing class (represented in Figure 2 by A1), holds a
reference to an object of the component class (represented in Figure 2 by B). The
interface of the original class (class A in Figure 2) is extended by the framing
class, and it is the responsibility of the framing class to invoke operations upon,
and manage the state of, the component class. Any references to the original
class from the rest of the system are replaced by references to the new framing
class.

The intention is to divide the state (S ; T ) of the class A between two classes:
one with state S and one with state T . S and T represent schemas that conjoin to
form the state of class A. The predicates P , Q , and R have subscripts indicating
the sets of variables that may appear free in them.

Ancestors of the class A are inherited by the newly formed classes A1 and B .
The actual set of classes inherited in each case corresponds with the partition (S
or T ) that the inherited classes contribute to. Any inherited classes that share a
common ancestor must contribute to the same partition. This way, after the rule
application, A1 and B inherit only the classes that contribute to their respective
states. Any class in the specification that was a descendant of the original class
A must now inherit both A1 and B .

A further precondition for performing the annealing rule is that every op-
eration in the class to be partitioned explicitly changes, if any variables at all,
either variables declared in S or variables declared in T , but not both (illus-
trated by the Δ(S ) and Δ(T ) notation). Operations that make no state changes
may appear in either or both classes wherever referenced.
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To achieve this precondition concerning operations, any operation schema
that changes variables in both S and T must be split (using schema operators)
such that the predicates that change variables in S are in a different operation
from those that change a variable in T . This can be achieved in most specifica-
tions by promoting logical operators to schema operators, and moving schemas
into new, separate operations and referencing the new operations from the orig-
inal one. This is in the spirit of the Extract Method [6] refactoring step which
splits a programming language procedure into two, where one contains a proce-
dure call to the other.

For example, in Object-Z:

X =̂ [Δ(S ,T ) | P{S,S ′,T} ∧ Q{S,T ,T ′} ]
is equivalent to, by promoting logical conjunction to schema conjunction:

X =̂ [Δ(S) | P{S,S ′,T} ]∧ [Δ(T ) | Q{S,T ,T ′} ]
which, by introducing an operation reference, is equivalent to:

X =̂ [Δ(S) | P{S,S ′,T} ]∧Y
Y =̂ [Δ(T ) | Q{S,T ,T ′} ]

Operations that modify variables in S must remain in class A1, and oper-
ations that modify variables in T must be moved to the component class B .
Operations that are moved into the component class must, in a similar way
to the Move Method [6] refactoring step, be redefined in the framing class to
dereference the component operation, e.g.

Y =̂ component .Y

Operation references need to be contained only in the operations that change
S (as above). This is so the references can be modified to dereference component
upon application of the rule.

In the case where predicates cannot be readily split to cater for the segmenta-
tion of state, input and output variables may be added to the operation schemas
to communicate variable values across the schema boundary using Object-Z’s
parallel (‖) operator. The parallel composition operator binds together output
variables on one side (suffixed by !) with input variables on the other side (suf-
fixed by ?) where the variables have the same base name.

The default action of the rule is to make all variables that were accessible in
the original class visible to both classes in the substituted system. In Figure 2,
this is represented by the inclusion of the respective foreign schema in the states
of A1 and B underneath the delta (Δ) symbol. Any declaration that appears un-
derneath the delta in the state of an Object-Z class may have its value changed
by any operation. The state invariant, for example θT = θcomponent .T in class
A1, ensures that the declared schema T is always synchronised with variable
bindings of the coupled object’s state component .T . This does create a high
degree of coupling as references are required in both directions, however un-
referenced variables may be removed after application of the rule eliminating
unnecessary coupling between the two classes.
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Context

a : A
b : B

A
. . .

B
. . .

Context1

a : C
b : C

C
. . .

Fig. 3. Coalescence rule, assuming A � C and B � C .

4.2 Coalescence

Coalescence (see Figure 3) is a rule that allows two classes A and B to be replaced
with one class C , so long as A and B are both refined by C (denoted A � C
and B � C respectively).

This approach allows the designer to extract common functionality from pos-
sibly independent parts of the system, perhaps using annealing, and then coalesce
this functionality to form a common library or object-type. Because annealing is
unidirectional and structure adding, this rule is important for structure reduc-
tion.

4.3 Proof Sketches of Rules

Annealing. To prove that the annealing rule is behaviour preserving (i.e., a
refinement), we adopt Derrick and Boiten’s [5] approach to class simulation.

For a class simulation to exist, that is, for the classes A1 and B to together
simulate the behaviour of class A, it is required that each operation in the system
containing A1 and B is applicable whenever the corresponding operation from
class A is applicable. Also, we must show that the application of any operation
in A1 and B is correct with respect to the corresponding operation in class A,
where correctness is defined as adherence to a retrieve relation upon states.

For the annealing rule Figure 2, the retrieve relation, which relates the states
of A1 (which indirectly includes B) with A, is defined as such:

R =̂ [A.STATE; A1.STATE | θA.S = θA1.S ∧ θA.T = θA1.T ]
To establish a class simulation, the applicability and correctness of every

operation in A1 needs to be shown with relation to the corresponding operation
in A. The class simulation laws provide the necessary proof obligations. We
demonstrate the use of these proof obligations for OpA in the appendix.

The arguments for the applicability and correctness of OpB are similar, but
for purposes of brevity are not presented.

Coalescence. The coalescence rule is proven by showing that C in Figure 3 is
a refinement of both A and B , and is therefore substitutable for both. When the
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rule is applied these refinements must be shown to hold, except for the trivial
case where A is exactly the same as B . This trivial case always holds as a class
is always a refinement of itself. Therefore, if two classes are identical, each is
a refinement of the other and may thus be replaced by a single class which is
identical to both.

5 Restructuring for Passive Players

In this section we systematically add a Player class to the monolithic System
class in Figure 1 using the rules presented in Section 4.

Annealing

We first apply annealing steps to extract the functionality of the two players
into two separate classes. This requires two applications of the rule, so the state
variables of System must be partitioned into two groups, each group representing
the data for a single player. These groups combined contain the entire state
information for System; consisting of guessesP1 with fleetP1, and guessesP2
with fleetP2.

The initialisation condition is quite easily distributed between the two classes
as it is a simple conjunction of predicates relating to independent parts of the
state. The annealing rule requires that every operation in System that changes
variables in both partitions be split, adding operation references where necessary.
InitFleetP1 and InitFleetP2 require no change as this requirement already holds,
but both FireAt operations need to be altered.

Progress can be made using logical operator promotions on FireAtP1 (and
similarly FireAtP2), but the conjunct in FireAtP1 responsible for updating the
guessesP2 variable cannot be split by simply promoting conjunction since it also
contains references to fleetP1 and fleetP1′. The parallel composition operator (‖)
in Object-Z can be used to achieve this end.

The schema containing the aforementioned conjunct should pertain exclu-
sively to player two’s partition, as this is what it changes. The required informa-
tion contained in fleetP1 and fleetP1′ can be exported from the other schema that
modifies player one’s partition by introducing two new output variables fleetP1!
and fleetP1′! to the schema and equating them to these variables. When input
variables are added to the schema that references player two’s variable set, (i.e.,
fleetP1? and fleetP1′?), the required variable values may be shared between the
two schemas via a parallel composition operator. It is relevant to note that this
process of introducing a parallel operator over schema conjunction is completely
syntactic and automatable. The resultant operation is:
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FireAtP1 =̂
[Δ(fleetP1) fleetP1!,fleetP1′! : FLEETBOARD ; guess? : COORDINATE
| fleetP1′ = fleetP1 −� {guess?} ∧
fleetP1! = fleetP1 ∧ fleetP1′! = fleetP1′ ] ‖

[Δ(guessesP2) fleetP1?,fleetP1′? : FLEETBOARD ; guess? : COORDINATE
| guess? �∈ dom guessesP2 ∧
guessesP2′ = guessesP2 ∪ {guess? →

if fleetP1′? ⊂ fleetP1? then
if ran fleetP1′? ⊂ ran fleetP1? then

if fleetP1′? = ∅ then
fleet destroyed else sink else hit else miss} ]

We then separate and name the anonymous schemas so that they form dis-
tinct operations as required by the annealing rule’s precondition. The particulars
of the names chosen are arbitrary at this stage, as long as they are meaningful.
In the case above, for example, we redefine FireAtP1 to be (UpdateFleetP1 ‖
UpdateGuessesP2) and define UpdateFleetP1 and UpdateGuessesP2 accordingly.

The annealing rule can then be applied to the System class, twice, producing
a class for each player: Player1 is created (refer to Figure 4) and then Player2
(similar to Player1 but not shown for brevity). The schemas that apply to each
player are migrated from System into each respective new class by the rule, and
each class is instantiated once using the variable names player1 and player2.
Dereferencing the player1 and player2 variables in System gives access to the
migrated operations and variables. The state information and initialisation pred-
icate for each player are also migrated, giving each class localised information
pertaining to the player it represents.

Coalescence

The single Player class, shown in Figure 5, is formed by applying the coalescence
rule to the Player1 and Player2 classes. The trivial application of the coalescence
rule requires that the two classes be exactly the same, which in this case can be
achieved through renaming attributes and operations (see Section 4) in each class
to be those names shown in Figure 5. This circumvents the need to discharge
proofs showing the Player class to be a refinement of both Player1 and Player2.

This completes the process of creating a separate class to encapsulate the
functionality of a player. However, the placement of game logic responsible for
player interaction still resides in the System class. Section 6 illustrates the process
of enacting an alternate design decision: moving this logic into the new Player
class.

6 Restructuring for Active Players

At this stage of the design process, a fairly significant design decision has al-
ready been made. The Player class formed by annealing and coalescing from the
System class creates Player objects that are passive. That is, the logic of the
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System
�(INIT, InitFleetP1, InitFleetP2,FireAtP1,FireAtP2)

guessesP2 : GUESSBOARD
fleetP2 : FLEETBOARD
player1 : Player1

player1.system = self

INIT

guessesP2 = ∅

fleetP2 = ∅

player1.INIT

InitFleetP2
Δ(fleetP2)
fleet? : FLEETBOARD

fleetP2′ = fleet?

InitFleetP1 =̂ player1.InitFleetP1
FireAtP1 =̂ player1.UpdateFleetP1 ‖ UpdateGuessesP2
UpdateGuessesP2 =̂

[Δ(guessesP2) fleetP1?,fleetP1′? : FLEETBOARD
guess? : COORDINATE

| guess? �∈ dom guessesP2 ∧ guessesP2′ = guessesP2 ∪ {guess? →
if fleetP1′? ⊂ fleetP1? then

if ran fleetP1′? ⊂ ran fleetP1? then
if fleetP1′? = ∅ then

fleet destroyed else sink else hit else miss} ]
FireAtP2 =̂ UpdateFleetP2 ‖ player1.UpdateGuessesP1
UpdateFleetP2 =̂

[Δ(fleetP2) fleetP2!,fleetP2′! : FLEETBOARD
guess? : COORDINATE

| fleetP2′ = fleetP2 −� {guess?} ∧
fleetP2! = fleetP2 ∧ fleetP2′! = fleetP2′ ]

Player1
�(INIT, system, InitFleetP1,UpdateFleetP1,UpdateGuessesP1)

guessesP1 : GUESSBOARD
fleetP1 : FLEETBOARD
system : System

INIT

guessesP1 = ∅

fleetP1 = ∅

InitFleetP1
Δ(fleetP1)
fleet? : FLEETBOARD

fleetP1′ = fleet?

UpdateFleetP1 =̂ [Δ(fleetP1) fleetP1!,fleetP1′! : FLEETBOARD
| fleetP1′ = fleetP1 −� {guess?} ∧
fleetP1! = fleetP1 ∧ fleetP1′! = fleetP1′ ]

UpdateGuessesP1 =̂
[Δ(guessesP1) fleetP2?,fleetP2′? : FLEETBOARD

guess? : COORDINATE
| guess? �∈ dom guessesP1 ∧ guessesP1′ = guessesP1 ∪ {guess? →

if fleetP2′? ⊂ fleetP2? then
if ran fleetP2′? ⊂ ran fleetP2? then

if fleetP2′? = ∅ then
fleet destroyed else sink else hit else miss} ]

Fig. 4. After the annealing step for Player1.
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System
�(INIT, InitFleetP1, InitFleetP2,FireAtP1,FireAtP2)

player1, player2 : Player

player1.system = self
player2.system = self

INIT

player1.INIT

player2.INIT

InitFleetP1 =̂ player1.InitFleet
InitFleetP2 =̂ player2.InitFleet
FireAtP1 =̂ player1.UpdateFleet ‖ player2.UpdateGuesses
FireAtP2 =̂ player2.UpdateFleet ‖ player1.UpdateGuesses

Player
�(INIT, system, InitFleet ,UpdateFleet ,UpdateGuesses)

guesses : GUESSBOARD
fleet : FLEETBOARD
system : System

INIT

guesses = ∅

fleet = ∅

UpdateFleet
Δ(fleet)
fleet !,fleet ′! : FLEETBOARD
guess? : COORDINATE

fleet ′ = fleet −� {guess?}
fleet ! = fleet ∧ fleet ′! = fleet ′

UpdateGuesses
Δ(guesses)
fleet?,fleet ′? : FLEETBOARD
guess? : COORDINATE

guess? �∈ dom guesses
guesses ′ = guesses ∪ {guess? →

if fleet ′? ⊂ fleet? then
if ran fleet ′? ⊂ ran fleet? then

if fleet ′? = ∅ then
fleet destroyed

else sink else hit else miss}
InitFleet
Δ(fleet)
fleet? : FLEETBOARD

fleet ′ = fleet?

Fig. 5. After the coalescence step.

interactions between the players of the system is contained within the System
class and not the Player classes themselves (the System acts as a mediator).
An alternative design moves this logic into the Player class, such that each
player instance holds a reference directly to the other player and the interaction
functionality is implemented by bypassing the System class altogether.

Even this solution has two possible modes: each player could either have
a Fire operation that launches a missile at the opponent, or a Defend oper-
ation that causes the opponent to fire a missile at the player object invoking
the operation. All solutions are consistent with the original specification, but
having active Player objects with a Fire operation is more intuitive, from a
user-interface perspective, than the passive approach presented earlier or having
a Defend operation.

To refactor Fire into the design, it is necessary that we go back to just after
the two annealing steps applied in Section 5, and:
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Step 1. Move the body of the FireAtP1 operation into Player2 and name it Fire.
Retain the operation FireAtP1 because it appears in the interface of System,
but redefine it as player2.Fire. We repeat this process accordingly to move the
FireAtP2 operation into the Player1 class.

For example, for class Player1:

Fire =̂ system.player2.UpdateFleet ‖ system.player1.UpdateGuesses

Step 2. We simplify the backward references to system by noting that the
Player1 and Player2 classes are only ever instantiated once. Therefore self
can replace system.player1 in Player1, and self can replace system.player2 in
Player2.

Step 3. We introduce a local opponent variable to invariantly equal system.player2
in Player1. Similarly for Player2, opponent is introduced to invariantly equal
system.player1. This supplies a simple abbreviation, so showing the refinement
is trivial.

Now, for both classes:

Fire =̂ opponent .UpdateFleet ‖ self .UpdateGuesses

With the invariants added:

For class Player1: opponent = system.player2
For class Player2: opponent = system.player1

Step 4. We move these new invariant conditions into the System class for all
instances of Player1 and Player2 (there is only one of each), and extend the
interface of both classes Player1 and Player2 to include opponent .

Thus, the System class now contains the invariants:

player1.opponent = player2
player2.opponent = player1

Step 5. In the same manner as described in Section 5, we apply the coalescence
rule trivially by renaming operations and variables in the two player classes to
make them correspond.

The changes to the specification from applying this process are illustrated
in Figure 6. The resultant specification represents an improvement, in terms of
design, over the original specification shown in Figure 1. This is evidenced by
the reduction of redundancy by encapsulating the concept of a player inside a
separate class. In addition, the design decision to move the interaction logic into
the Player class is a step toward a distributed architecture, and also toward the
provision of a separate user-interface for each Player .
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System
�(INIT, InitFleetP1, InitFleetP2,FireAtP1,FireAtP2, player1, player2)

player1, player2 : Player

player1.system = self
player2.system = self
player1.opponent = player2
player2.opponent = player1

INIT

player1.INIT

player2.INIT

InitFleetP1 =̂ player1.InitFleet
InitFleetP2 =̂ player2.InitFleet
FireAtP1 =̂ player2.Fire
FireAtP2 =̂ player1.Fire

Player
�(INIT, system, InitFleet ,Fire, opponent)

guesses : GUESSBOARD
fleet : FLEETBOARD
system : System
opponent : Player

INIT

guesses = ∅

fleet = ∅

InitFleet
Δ(fleet)
fleet? : FLEETBOARD

fleet ′ = fleet?

UpdateFleet
Δ(fleet)
fleet !,fleet ′! : FLEETBOARD
guess? : COORDINATE

fleet ′ = fleet −� {guess?}
fleet ! = fleet ∧ fleet ′! = fleet ′

UpdateGuesses
Δ(guesses)
fleet?,fleet ′? : FLEETBOARD
guess? : COORDINATE

guess? �∈ dom guesses
guesses ′ = guesses ∪ {guess? →

if fleet ′? ⊂ fleet? then
if ran fleet ′? ⊂ ran fleet? then

if fleet ′? = ∅ then
fleet destroyed

else sink
else hit

else miss} ]
Fire =̂ opponent .UpdateFleet ‖ self .UpdateGuesses

Fig. 6. After the coalescence step, with active players.

7 Conclusions and Future Work

The presented transformation rules are intended to be general enough to allow
for the introduction of a variety of different designs and architectures. It is recog-



www.manaraa.com

82 Tim McComb

nised, however, that adding a rule to repeat structure, rather than just divide
or remove structure, could lend itself to many more architecture types (particu-
larly in distributed domains). Other rules for modifying inheritance relationships
between classes would be useful, particularly when targeting languages that do
not support multiple inheritance (such as Java), and is left as an area for future
work.

The provision of tool support for automating the refactoring process has been
achieved in the past [16,19] and is recognised as important. Tool support for the
rules presented above is possible, and has been prototyped by formalising the
rules in the Z specification language as operations upon a state containing the
Object-Z specification (a meta-model). The rules are written as schemas that
are executable by a specification animator, so the user may interact with the
animation software to automate the refactoring process. The evolution of the
case study presented in this paper has been successfully automated using this
technique, taking advantage of the Possum [8] animator. The possibility exists
for abstraction from the specification language itself to allow succinct formal
specification and reasoning about these refactoring steps, in a similar vein to
the work presented by Mens et al. [14] and Lämmel [20], and this is also left for
future work.

The methodology is also intended to allow for an heuristic-based descrip-
tion of object-oriented design patterns as sequences of the refactoring steps.
Some work has been performed toward this goal by introducing the Model-
View-Controller architectural paradigm [9] for user interfaces into the above
case study.
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Abstract. This paper presents the use of a method – and its corre-
sponding tool set – for compositional verification of applet interactions
on a realistic industrial smart card case study. The case study, an elec-
tronic purse, is provided by smart card producer Gemplus as a test case
for formal methods for smart cards. The verification method focuses on
the possible interactions between different applets, co-existing on the
same card, and provides a technique to specify and detect illicit interac-
tions between these applets. The method is compositional, thus support-
ing post-issuance loading of applets. The correctness of a global system
property can algorithmically be inferred from local applet properties.
Later, when loading applets on a card, the implementations are matched
against these local properties, in order to guarantee the global property.
The theoretical framework underlying our method has been presented
elsewhere; the present paper evaluates its practical usability by means
of an industrial case study. In particular, we outline the tool set that we
have assembled to support the verification process, combining existing
model checkers with newly developed tools, tailored to our method.

1 Introduction

The growing market for smart cards and other small personal devices has in-
creased the need to use formal validation and verification techniques in industry.
These devices often contain privacy–sensitive information; this is the case in typ-
ical usages for smart cards such as health care information systems and electronic
purses. Therefore strong security guarantees are needed for their wide–spread ac-
ceptance. With the acceptance of evaluation schemes such as Common Criteria1

industry has come to realise that the only way to achieve such high guarantees
is to adopt the use of formal methods in industrial practice.

Various work has been done, aiming at the verification of different kinds of
properties of smart card applications. Properties under study are for example
functional correctness, confidentiality, availability and restrictions on informa-
tion flow. Often this work focuses on the correctness of a single applet, or of a set
� Partially supported by the EU as part of the VerifiCard project IST-2000-26328.
1 See http://www.commoncriteria.org.
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c© Springer-Verlag Berlin Heidelberg 2004



www.manaraa.com

Checking Absence of Illicit Applet Interactions: A Case Study 85

of applets that is known in advance. However, future generations of smart cards
are expected to allow post–issuance loading of applets, where newly installed
applets interact with the applets already present on the card. As a consequence,
at the time the card is issued, it is not known which applets it might contain.
Therefore, it is necessary to state minimal requirements for the applets that can
be loaded later on the card, and to be able to verify at loading time that the ap-
plets actually respect these requirements. Only then, existing applets can safely
communicate with new applets, without corrupting the security of the card.

In the present case study we focus on a particular kind of properties to
ensure the security of the card, namely the absence of illicit control flow between
the different applets. For multi–application smart cards, certain control flow
paths can be undesirable because of general platform–dependent restrictions,
like the recommendation to avoid recursion due to limited resources, or due
to application–specific restrictions, like undesirable information flow caused by
illicit applet interactions as studied in this paper.

In a companion paper we presented an algorithmic compositional verification
technique for such control flow based safety properties [14], using a temporal
logic specification language for specifying applet properties. These can be either
structural, interpreting formulae over the control flow graph of an applet, or
behavioural, interpreting formulae over applet behaviour. The approach is com-
positional in that it allows global control flow properties of the whole system to
be inferred from local control flow properties of the individual applets. In this
way, global security properties can be guaranteed to hold even in the presence
of post–issuance loading of applets, as long as these applets satisfy their local
properties. The latter check can be delegated to a separate authority not neces-
sarily possessing the code of the applets already residing on the card. However,
while the global properties can be behavioural or structural, we require the lo-
cal properties to be structural; our technique does not allow global behavioural
properties to be algorithmically inferred from local behavioural ones. For a more
detailed motivation for using structural assumptions the reader is referred to [14].

An important asset of our method is that the verification tasks involved are
all based on algorithmic techniques, as opposed to earlier work in which we de-
veloped a proof system for compositional verification [1]. Therefore, once the
specifications for the different applets and the illicit applet interaction are given,
all verifications can be done automatically, using push–button technology. This
paper presents the tool set that we have assembled to support the whole verifica-
tion process, and illustrates its usefulness by applying it to a realistic, industrial
electronic purse case study, provided by the smart card producer Gemplus. The
application is not actually used by Gemplus, but has been provided as a test
case to apply formal methods to smart card applications. The properties that
we verify illustrate typical application–dependent illicit applet interactions.

As far as we are aware, this work is the first to develop algorithmic techniques
for the compositional verification of control flow properties for applets. Earlier,
we used part of our tool set for non-compositional verification of control flow
properties [8]. The underlying program model has been inspired by the work of
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Besson et al. [2], who verify stack properties for Java programs. Our work differs
considerably from more known model checkers for multi-threaded Java such as
Bandera [11] and Java PathFinder [5]. In contrast to these tools, we focus on the
control flow of applications and the compositionality of the verification. Finally,
we mention the model checking algorithms for Push–Down Automata, developed
by Bouajjani et al. [4]. We use the implementation of these algorithms in the
model checker Alfred [13] to verify the correctness of the decomposition.

The paper is structured as follows. First, Section 2 outlines the general struc-
ture of the tool set. Next, Section 3 summarises the theoretical framework under-
lying our approach. Then, Section 4 introduces the electronic purse example, and
motivates the property that we are interested in. This property is formalised in
Section 5, together with appropriate local properties for the individual applets.
Finally, Section 6 discusses the use of our tool set to establish the correctness
of the property decomposition and of the local properties w.r.t. an implementa-
tion. For a more detailed account of the theoretical framework we refer to our
companion paper [14].

2 General Overview of the Approach

As explained above, we aim at checking the absence of illicit applet interac-
tions, given the possibility of post–issuance loading, by using a compositional
verification method. In our method, we identify the following tasks:

1. specification of global security properties as behavioural safety properties;
2. specification of local properties as structural safety properties;
3. algorithmic verification of property decompositions, ensuring that the local

properties imply the global ones; and
4. algorithmic verification of local properties for individual applets.

Our method is based on the construction of maximal applets w.r.t. structural
safety properties. An applet is considered to be maximal w.r.t. a property if it
simulates all applets respecting this property.

Concretely, suppose we want to prove that the composition of applets A
and B respects a security property, formulated as behavioural safety property
φ (Task 1). We specify structural properties σA and σB (Task 2) for which we
construct maximal applets θIA

(σA) and θIB
(σB), respectively (where IA and IB

are the interfaces of the applets A and B, respectively). We show, using exist-
ing model checking techniques, that their composition respects the behavioural
safety property φ, i.e. θIA

(σA) � θIB
(σB) |= φ. The validity of this assertion

corresponds to the correctness of the property decomposition (Task 3), since
the simulation pre–order is preserved under applet composition and behavioural
properties expressible in our logic are preserved by simulation. When we get con-
crete implementations for A and B, we use existing model checking techniques to
check whether these implementations respect σA and σB , respectively (Task 4).

To support our compositional verification method, we have developed a tool
set, combining existing model checking tools and newly developed tools, specific
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to our method. Figure 1 gives a general overview of our tool set. Section 3 below
introduces the underlying theoretical framework.

As input we have for each applet either an implementation, or a structural
property, restricting its possible implementations, plus an interface, specifying
the methods provided and required by the applet. For these inputs, we construct
an applet representation, which is basically a collection of control flow graphs
representing methods, plus the applet interface. In case we have the applet im-
plementation, we use the Applet Analyser to extract the applet graph. In case
we have a structural property, we use the Maximal Model Constructor to con-
struct an applet graph that simulates all possible implementations of applets
respecting the formula. For a given applet implementation, the Applet Anal-
yser can also be used to obtain the applet interface. If required, applets can be
composed, using the applet composition operator �. This operation essentially
corresponds to forming the disjoint union of applets. Using the Model Generator
the resulting applet graphs are translated into models which serve as input for
different model checkers. If we want to check structural properties, we translate
the resulting graphs into CCS processes, which can be used as input for the
Edinburgh Concurrency Workbench (CWB) [9]. If for a composed system we
want to verify whether it respects a behavioural safety property, we translate
the composed graphs into Push–Down Automata (PDA), which form the input
for the model checker Alfred [13].

3 A Framework for Compositional Verification

This section outlines the theoretical framework underlying our tool set. For a
more comprehensive account of the technical details the reader is referred to [14].

3.1 Program Model

As we are only studying control flow properties, we abstract away from all data
in our program model. Further, since we are only concerned with smart card
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applications, we only consider sequential programs2. Basically, an applet is a col-
lection of method graphs, plus an interface specifying which methods it provides
and requires. For each method, there is a method graph describing its possible
control flow. Edges in the graphs denote method calls or internal computations.

As explained above, we distinguish between structural level properties, re-
stricting possible implementations of methods, and behavioural level properties,
restricting the possible behaviour of methods. Therefore, we also have two differ-
ent views on applets (and methods): structural and behavioural. However, these
two views are instantiations of a single framework (see [14]).

General Framework. First we present the general framework, defining the notions
of model and specification over a set of labels L and a set of atomic propositions
A. These are later instantiated to the structural and behavioural level.

Definition 1. (Model) A model over labels L and atomic propositions A is
a structure M = (S, L,→, A, λ), where S is a set of states, L is a finite set
of labels, → ⊆ S × L × S is a transition relation, A is a finite set of atomic
propositions, and λ : S → P(A) is a valuation assigning to each state s the
atomic propositions that hold at s. A specification S over L and A is a pair
(M, E), where M is a model over L and A and E ⊆ S is a set of states.

Intuitively, one can think of E as the set of entry states of the model. We define
the usual notion of simulation ≤ (where related states satisfy the same atomic
propositions).

Applet Structure. Before instantiating the notion of model on the structural
level, we first define the notion of applet interface. Let Meth be a countably
infinite set of method names.

Definition 2. (Applet interface) An applet interface is a pair I = (I+, I−),
where I+, I− ⊆Meth are finite sets of names of provided and required methods,
respectively. The composition of two interfaces I1 = (I+

1 , I−
1 ) and I2 = (I+

2 , I−
2 )

is defined by I1 ∪ I2 = (I+
1 ∪ I+

2 , I−
1 ∪ I−

2 ).

As mentioned above, a method specification is an instance of the general notion
of specification.

Definition 3. (Method specification) A method graph for m ∈ Meth over
a set M of method names is a finite model

Mm = (Vm, Lm,→m, Am, λm)

where Vm is the set of control nodes of m, Lm = M ∪ {ε}, Am = {m, r},
m ∈ λm(v) for all v ∈ Vm, i.e. each node is tagged with the method name, and
the nodes v ∈ Vm with r ∈ λm(v) are return points. A method specification for
m ∈ Meth over M is a pair (Mm, Em), where Mm is a method graph for m
over M and Em ⊆ Vm is a non–empty set of entry points of m.
2 For example, Java Card, a dialect of Java for programming smart cards, does cur-

rently not allow multi-threading.
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Table 1. Applet Transition Rules

(transfer)
m ∈ I+ v →m v′ v |= ¬r

(v, σ) ε−→ (v′, σ)

(call)
m1, m2 ∈ I+ v1

m2−−→m1 v′
1 v1 |= ¬r v2 |= m2 v2 ∈ E

(v1, σ)
m1call m2−−−−−−→ (v2, v′

1 · σ)

(return)
m1, m2 ∈ I+ v2 |= m2 ∧ r v1 |= m1

(v2, v1 · σ)
m2 ret m1−−−−−−→ (v1, σ)

An applet is basically a collection of method specifications and an interface. For
the formal definition we use the notion of disjoint union of specifications S1�S2,
where each state is tagged with 1 or 2, respectively, and (s, i) a−→S1�S2 (t, i), for
i ∈ {1, 2}, if and only if s

a−→Si
t.

Definition 4. (Applet) An applet A with interface I, written A : I, is defined
inductively by

– (Mm, Em) : ({m}, M) if (Mm, Em) is a method specification for m ∈Meth
over M , and

– A1 � A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.

An applet is closed if I− ⊆ I+, i.e. it does not require any external methods.
Simulation instantiated to this particular type of models is called structural
simulation, denoted as ≤s.

Applet Behaviour. Next we instantiate specifications on the behavioural level.

Definition 5. (Behaviour) Let A = (M, E) : (I+, I−) be a closed applet where
M = (V, L,→, A, λ). The behaviour of A is described by the specification b(A) =
(Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb) such that Sb = V × V ∗, i.e. states
are pairs of control points and stacks, Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈
I+} ∪ {ε}, →b is defined by the rules of Table 1, Ab = A, and λb((v, σ)) = λ(v).

The set of initial states Eb is defined by Eb = E × {ε}, where ε denotes the
empty sequence over V .

Note that applet behaviour defines a Push–Down Automaton (see, e.g., [7] for a
survey of verification techniques for infinite process structures). We exploit this
by using a model checker for PDAs to verify behavioural properties.

Also on the behavioural level, we instantiate the definition of simulation ≤b.
Any two applets that are related by structural simulation, are also related by
behavioural simulation, but the converse is not true (since behavioural simulation
only requires reachable states to be related).
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3.2 Property Specification Language

We use a fragment of the modal μ–calculus [12], namely the one excluding dia-
monds and least fixed points, to express properties restricting applet structure
and behaviour3. We call this fragment simulation logic, because it is able to
characterise simulation logically and, vice versa, satisfaction of a formula corre-
sponds to being simulated by a maximal model derived from the formula. Similar
logics have been studied earlier for capturing branching–time safety properties
(see e.g. [3]). Let X be a countably infinite set of variables over sets of states. Let
X ∈ X , a ∈ L and p ∈ A denote state variables, labels and atomic propositions,
respectively. The formulae in simulation logic are inductively defined as follows.

φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ | νX.φ

We only consider closed formulae of simulation logic, i.e. all variables X ∈ X
have to be bound by some binder νX. Their semantics is standard, see e.g.
Kozen [12]. The satisfaction relation is extended from states to specifications as
usual: a specification satisfies a formula if all its entry points do. This relation
is instantiated at both the structural and the behavioural level, denoted as |=s

and |=b, respectively. For each applet A : I, we have an atomic proposition for
each m ∈ I+ and an atomic proposition r. At the structural level, labels are in
I− ∪ {ε}, and boxes are interpreted over edges in the method graphs. At the
behavioural level, labels are in Lb (see Definition 5), and boxes are interpreted
over transitions (see Table 1).

Writing specifications in the modal μ–calculus is known to be hard (even in
our fragment), therefore we define a collection of commonly used specification
patterns (inspired by the Bandera Specification Pattern project [10]). In our ex-
perience, all relevant behavioural control flow safety properties can be expressed
using a small set of such patterns – however, it is important to remember that
one can always fall back on the full expressiveness of simulation logic. Below we
present several specification patterns, both at structural and behavioural level.
These are all used in the case study at hand.

Structural Specification Patterns. We shall use Everywhere with the obvious
formalisation:

Everywhere σ = νZ. σ ∧ [ε, I−]Z

as well as the following patterns, for method sets M and M ′ of an applet with
interface I:

M HasNoCallsTo M ′ =
(∧

m∈M ¬m
) ∨ (Everywhere [M ′] false)

HasNoOutsideCalls M = M HasNoCallsTo (I− \M)

The first pattern specifies that method graphs in the set M do not contain edges
labelled with elements of the set M ′. The second specifies a closed set of methods
M , i.e. methods in M only contain calls to methods in M .
3 In fact, in our theoretical framework, we use an alternative, but equivalent formula-

tion, expressing formulae as modal equation systems.
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Behavioural Specification Patterns. Pattern Always is standard:

Always φ = νZ. φ ∧ [Lb]Z

For specifying that a property φ is to hold within a call to method m, we use
the Within pattern formalised as follows:

Within m φ = ¬m ∨ (Always φ)

Notice that this is a typical behavioural pattern: the notion of Within a method
invocation encompasses all methods that might be invoked during the call to m.
This reachability notion cannot directly be expressed at the structural level.

Finally, for applet A : (I+, I−) and method set M , we define:

CanNotCallAM =
∧

m∈I+

∧
m′∈M

[m call m′] false

This pattern holds for state (v, σ) if no call to a method in M is possible.

3.3 Maximal Models and Compositional Verification

Our compositional verification rests on the idea of constructing a so–called max-
imal model for a given property (w.r.t. a simulation pre–order). For every struc-
tural property σ and applet interface I, we can construct a so–called maximal
applet θI(σ), i.e. an applet with interface I that simulates all applets with this
interface, respecting property σ. As the simulation pre–order is preserved un-
der applet composition and behavioural properties expressible in the logic are
preserved by the simulation pre–order, we have the following compositional ver-
ification principle:

A |=s σ θI(σ) � B |=b φ

A � B |=b φ
(beh-comp)

This rule states that the composition of applets A : I and B : J satisfies
(global) behavioural property φ, if one can find a (local) structural property
σ, satisfied by A, such that the composition of the maximal applet w.r.t. σ and
interface I, composed with applet B satisfies property φ. Thus, if we are given a
structural property for an applet A and an implementation for an applet B we
can verify whether their composition satisfies the required properties. We use the
Maximal Model Constructor to compute θI(σ), the Applet Analyser to extract
the applet graph for B, and the Model Generator to produce input for Alfred,
so it can check θI(σ)�B |=b φ. Later, when an implementation for applet A be-
comes available, it can be verified independently whether it respects σ, by using
the Applet Analyser to extract the applet graph for A, and the Model Generator
to generate input for CWB, which is used to check structural properties.

Note that, since applet composition is commutative, we can apply the com-
position principle above to its second premise and also replace applet B by a
local structural property (in the same way as displayed above for applet A).
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4 Illicit Applet Interactions in the Electronic Purse

The Gemplus electronic purse case study PACAP [6] is developed to provide a
realistic case study for applying formal methods to Java Card applications. The
case study defines three applications: CardIssuer, Purse and Loyalty. Typically, a
card will contain one card issuer and one purse applet, but several loyalty applets.
The property that we verify for this case study only is concerned with Purse
and Loyalty, therefore we will not discuss CardIssuer any further. If the card
holder wishes to join a loyalty program, the appropriate applet can be loaded
on the card. Subsequently, the purse and the different loyalties will exchange
information about the purchases made, so the loyalty points can be credited.
Current versions of Java Card use shareable interfaces to exchange this kind of
information, but in the future this is likely to change. However, for our techniques
it is not relevant how this communication exactly takes place, we only require
that it is done in terms of method calls. The goal of our work is to ensure that
no illicit interactions can happen between the applets on the card.

To understand the property that we are interested in, we look closer at how
the purse and the loyalties communicate about the purchases made with the
card. For efficiency reasons, the electronic purse keeps a log table of all credit and
debit transactions, and the loyalty applets can request the (relevant) information
stored in this table. Further, loyalties might have so–called partner loyalties,
which means that a user can add up the points obtained with the different
loyalty programs. Therefore, each loyalty should keep track of its balance and a
so–called extended balance. If the user wishes to know how many loyalty points
are available exactly, the loyalty applet will ask for the relevant entries of the
purse’s log table in order to update its balance, and it will also ask the balances
of partner loyalties in order to compute the extended balance.

If the log table is full, existing entries will be replaced by new transactions.
In order to ensure that loyalties do not miss any of the logged transactions, they
can subscribe to the so–called logFull service. This service signals all subscribed
loyalties that the log table will be overwritten soon, and that therefore they
should update their balances. Typically, loyalties will have to pay for this service.

Suppose we have an electronic purse, which contains besides the electronic
purse itself two partner loyalties, say L1 and L2. Further, suppose that L1 has
subscribed to the logFull service, while L2 has not. If in reaction to the logFull
message L1 always calls an interface method of L2 (say to ask for its balance),
L2 can implicitly deduce that the log table might be full. A malicious imple-
mentation of L2 might therefore request the information stored in the log table
before returning the value of its local balance to L1. If loyalties have to pay for
the logFull service, such control flow is unwanted, since the owner of the Purse
applet will not want other loyalties to get this information for free.

This is a typical example of an illicit applet interaction, that our compo-
sitional verification technique can detect. Below, we show how the absence of
this particular undesired scenario can be specified and verified algorithmically.
We allow an arbitrary number of loyalty applets on the card. Since all loyalty
applets have the same interface, we apply class–based analysis. We assume that
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at verification time only the Purse applet has been loaded on the card; the code
of the loyalty applet class is not yet available. We use compositional reasoning
to reduce the global behavioural property expressing the absence of the scenario
described above to local structural properties of the purse and loyalty applet
classes. The purse applet code is then checked against its structural property.
When the loyalty applet code becomes available, possibly after the card has been
issued, it is checked against its structural property before loading it on the card.

5 Specification

This section presents the formalisation of the global and local security properties
that we need for our example. The next section discusses the verification of the
decomposition and of the implementations w.r.t. the local properties.

As mentioned above, communication between applets takes place via so–
called shareable interfaces. The Purse applet defines a shareable interface for
communication with loyalty applets, containing among others the methods get-
Transaction, and isThereTransaction. The Loyalty applet defines shareable in-
terfaces for communication with Purse and with other loyalty applets, containing
among others the method logFull. The set I+

P denotes the methods provided by
Purse, and MSI

L denotes the set of shareable interface methods of Loyalty.

The Global Security Property. To guarantee that no loyalty will get the opportu-
nity to circumvent subscribing to the logFull service, we require that if the Purse
calls the logFull method of a loyalty, within this call the loyalty does not commu-
nicate with other loyalties. However, as the logFull method is supposed to call
the Purse for its transactions, we also have to exclude indirect communications,
via the Purse. We require the following global behavioural property:

A call to Loyalty.logFull does not trigger any calls to any other loyalty.

This property can be formalised with the help of behavioural patterns:

(φ) Within Loyalty.logFull
(CanNotCall Loyalty MSI

L ) ∧ (CanNotCall Purse MSI
L )

Thus, if loyalty receives a logFull message, it cannot call any other loyalty (be-
cause it cannot call any of its shareable interface methods), and in addition, if
the Purse is activated within the call to logFull, it cannot call any loyalty applet.

Property Decomposition. Next, we phrase local structural properties for Purse
and Loyalty. Here we explain their formalisation; Section 6 presents how we actu-
ally verify that they are sufficient to guarantee the global behavioural property.
Within Loyalty.logFull, the Loyalty applet has to call the methods Purse.isThere-
Transaction and Purse.getTransaction, but it should not make any other exter-
nal calls (where calls to shareable interface methods of Loyalty are considered
external4). Thus, a natural structural property for Loyalty would be, informally:
4 Notice that since we are performing class–based analysis, we cannot distinguish

between calls to interface methods of other instances, and those of the same instance.
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From any entry point of Loyalty.logFull, the only reachable external calls
are calls to Purse.isThereTransaction and Purse.getTransaction.

Reachability is understood in terms of an extended graph of Loyalty containing
explicit inter–method call edges.

For the Purse applet we know that within a call to Loyalty.logFull it can
only be activated via Purse.isThereTransaction or Purse.getTransaction.

From any entry point of Purse.isThereTransaction or Purse.getTransaction,
no external call is reachable.

Again, reachability should be understood in terms of a graph containing explicit
inter–method call edges. As our program model does not contain these, the
above properties cannot be formalised directly in our logic. However, they can be
formalised on a meta–level; for example for the Purse, the property holds, if and
only if there exist sets of methods MgT ⊆ I+

P , containing Purse.getTransaction,
and MiTT ⊆ I+

P , containing Purse.isThereTransaction, such that:

(σP ) HasNoOutsideCalls MiTT ∧ HasNoOutsideCalls MgT

These sets represent the methods in Purse which can be called transitively from
Purse.isThereTransaction and Purse.getTransaction, respectively. We can use
the Applet Analyser to find them. Similarly, to express the property for Loyalty
we need a set of methods MlF ⊆ I+

L containing Loyalty.logFull, such that:

(σL) MlF HasNoCallsTo I−
L \

(
M \MSI

L

)
where M = MlF ∪ {Purse.isThereTransaction, Purse.getTransaction}. Calls
to MSI

L are excluded, since, as explained above, the methods in MSI
L are treated

as external. Since we assume that the code of the loyalty applet class is not yet
available at verification time, MlF has to be guessed. Here we take the (possibly
too) simple choice MlF = {Loyalty.logFull}. Under this choice, σL simplifies to
MlF HasNoCallsTo I−

L \ {Purse.isThereTransaction, Purse.getTransaction}.
However, if later one wishes to load an implementation of Loyalty with a different
set MlF , correctness of the decomposition can be re–established automatically.

6 Verification

Now that we have specified global and local security properties, we have to show:
(1) the local properties are sufficient to establish the global security property, and
(2) the implementations of the different applets respect the local properties. In
order to do this, we identify the following (independent) tasks, discussed below.

1. Verifying the correctness of the property decomposition by:
(a) building θIP

(σP ) and θIL
(σL), the maximal applets for σP and σL; and

(b) model checking θIP
(σP ) � θIL

(σL) |=b φ.
2. Verifying the local structural properties by:

(a) extracting the applet graphs P of the Purse and L of the Loyalty ; and
(b) model checking P |=s σP and L |=s σL.
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Table 2. Statistics for maximal applet construction.

# nodes # edges constr. time
σL 474 277 700 25 min.
σP 2 786 603 128 13 hrs.

As explained above, we have developed a tool set to support these verification
tasks, combining existing model checking tools (CWB and Alfred) with our own
tools (Maximal Model Constructor, Applet Analyser and the Model Generator).

6.1 Correctness of the Property Decomposition

To check correctness of the property decomposition, we construct maximal ap-
plets w.r.t. the specifications of the Purse and the Loyalty, and verify whether
their composition respects the global behavioural property.

Constructing Maximal Applets. Given applet interface I and structural safety
property σ, we produce θI(σ), the maximal applet for I and σ, using the proce-
dure described in [14], implemented in Ocaml as the Maximal Model Construc-
tor. The construction proceeds in three steps. First, the interface I is translated
into a structural safety property characterising all behaviour possible under this
interface. Then, the conjunction of this formula and the property σ is trans-
formed into a semantically equivalent normal form, which can directly be trans-
lated into a model. This model is the maximal applet θI(σ). In general, the size
of a maximal applet is exponential in the size of the input. We implemented
some optimisations, which save both time and, more importantly, memory.

In the maximal applet for σL we

iTT, gTiTT, gT, eps

v1

v2 Loyalty.m, r

Loyalty.m

I−, eps

v1

v2 Loyalty.logFull, r

Loyalty.logFull

iTT, gT, eps

iTT, gT, eps I−, eps

iTT, gT, eps

I−, eps

I−, eps

Fig. 2. Methods in θIL(σL)

can distinguish between two kinds of
methods, which are illustrated in Fig-
ure 2: the methods in MlF (that is
logFull) have the left method graph,
and only contain calls to Purse.iTT
and Purse.gT. All other methods pro-
vided by Loyalty have the form of the
right method graph, and do not con-
tain any restrictions on the method
calls. Each method of the applet θIL

(σL) has two nodes. The maximal applet for
σP is similar, but each method consists of two to eight nodes depending on the
set it belongs to (MiTT , MgT or I+

P ). Table 2 provides statistics on the size of
the constructed graphs, and the corresponding construction time on a Pentium
1.9 GHz machine.

Model Checking Behavioural Properties. Once the maximal applets θIP
(σP ) and

θIL
(σL) are constructed, we produce their composition θIP

(σP ) � θIL
(σL). The

behaviour of this applet is a (possibly infinite state) model generated by a push-
down automaton (PDA) given as a set of production rules. The model checking



www.manaraa.com

96 Marieke Huisman et al.

Table 3. Statistics on applet graph extraction and verification.

# classes # methods # nodes # edges extr. time verif. time
Loyalty 11 237 3 782 4 372 5.6 sec. 12 sec.
Purse 15 367 5 882 7 205 7.5 sec. 19 sec.

problem for this class of models is exponential both in the size of the formula
and in the number of control states of the PDA [7]. We base our experiments on
Alfred [13], a demonstrator tool for model checking alternation–free modal μ–
calculus properties of PDAs. We developed the Model Generator – implemented
in Java – to translate applet graphs (in this case θIP

(σP ) � θIL
(σL)) to a PDA

representation, which serves as input to Alfred. We were successful in checking
correctness of (similar) property decompositions for applets with a small number
of interface methods; when dealing with applets with large interfaces as in our
case study, however, Alfred failed to scale up. Currently, we are investigating
how to encode applets more efficiently, into context-free processes, which are
equivalent to PDAs with a single control state. For this class of processes the
model checking complexity becomes polynomial in the number of productions.

6.2 Correctness of the Local Structural Properties

Extracting Applet Graphs. The Applet Analyser is used to extract applet graphs
and the appropriate set of entry points from the byte code of an applet. This is a
static analysis tool, built on top of the SOOT Java Optimization Framework [15].
The byte code of a Java Card applet is transformed into Jimple basic blocks,
while abstracting away variables, method parameters, and calls to methods of
the Java Card API. We use SOOT’s standard class hierarchy analysis to produce
a safe over-approximation of the call graph. If, for example, the static analysis
cannot determine the receiver of a virtual method call, a call edge is generated
for every possible method implementation. Table 3 provides statistics on the
extracted applet graphs.

Model Checking Structural Properties. Applet graphs can be viewed as finite
Kripke structures. This allows structural properties expressed in temporal log-
ics to be checked using standard model checking tools such as CWB [9]. The
Kripke structures of the CWB are labelled transition systems generated from
CCS process definitions. For this purpose, we use the Model Generator to con-
vert applet graphs into a representation as CCS processes. Since CCS does not
have the notion of valuation, atomic propositions p assigned to a node in an ap-
plet are represented by probes, that is, self–loops labelled by p. The translation
also produces a set of process constants corresponding to the entry nodes of the
respective applet. To model check an applet graph against a structural safety
property, all initial states have to be checked individually. We encode the prop-
erties to be checked as μ–calculus formulae, replacing atomic propositions p by
〈p〉 true. Since CWB supports parametrised formulae, our specification patterns
can directly be encoded.
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When verifying L |=s σL, we realised that in fact the choice of MlF was too
optimistic, as the implementation of Loyalty.logFull uses several other (internal)
methods. Using the Applet Analyser we computed MlF as the set of methods
reachable from Loyalty.logFull, adapted the specification σL and reverified L |=s

σL. Reverifying the decomposition can be done automatically. The last column
in Table 3 gives the verification times for model checking P |=s σP and L |=s σL

on a Pentium 1.9 GHz machine.

7 Conclusions
This paper demonstrates a method to detect illicit interactions between applets,
installed on a single smart card. The method is compositional, and therefore
supports secure post–issuance loading of applets. In particular, the method al-
lows to establish global control flow safety properties for a composed system,
provided sufficient local properties are given for the applets. When the applets
are loaded (post–issuance) it only remains to be shown that they respect their
local property. while the global properties can be structural or behavioural, the
local properties need to be structural. To support the specification process, a col-
lection of specification patterns is proposed, with appropriate translations into
the underlying logic.

We assembled a tool set – combining existing and newly developed tools – to
support the verification tasks that arise in our method. Once the specifications
are available, all verifications can be done using push–button technology. Thus,
it can be automatically checked whether an applet can be accepted on the card.

The case study shows that the presented verification method and tool set
can be used in practice for guaranteeing absence of illicit applet interactions.
However, there are some possibilities for improvement. Finding suitable local
properties, which requires ingenuity, is complicated by the requirement of for-
mulating local properties structurally. Another difficulty stems from the inherent
algorithmic complexity of two of the tasks: both maximal model construction and
model checking behavioural properties are problems exponential in the size of
the formula, thus making optimisations of these algorithms crucial for their suc-
cessful application. For some common property patterns such as Everywhere σ,
the size of the formula depends on the size of the interface. Therefore, it is crucial
to develop abstraction techniques to abstract away from method names which
are irrelevant to the given property.

Future work will thus go into fine–tuning the notion of interface, by defining
public and private interfaces. Now interfaces contain all methods provided and
required by a method. We wish to restrict the verification of the global safety
properties to public interfaces, containing only the externally visible methods,
provided and required by an applet. In order to check whether an implementa-
tion respects its local property, we will need to define an appropriate notion of
hiding. We also intend to extend the set of specification patterns that we use,
by investigating which classes of security properties generally are used. Finally,
on a more theoretical side, we will study if we can extend the expressiveness of
the logic used (e.g. by adding diamond modalities) and under what conditions
we can allow behavioural local properties.
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Abstract. Bytecode verification is a key security function in several
architectures for mobile and embedded code, including Java, JavaCard,
and .NET. Over the last few years, its formal correctness has been stud-
ied extensively by academia and industry, using general purpose theorem
provers. Yet a recent roadmap on smartcard research [1], and a recent
survey of the field of Java verification [11], point to a severe lack of
methodologies, techniques and tools to help such formal endeavours. In
earlier work, we have developed, and partly automated, a methodology
to establish the correctness of static analyses similar to bytecode verifica-
tion. The purpose of this paper is to complete the automation process by
certifying the different dataflow analyses involved in bytecode verifica-
tion, using the Coq proof assistant. It enables us to derive automatically,
from a reference virtual machine that performs verification at run-time,
and satisfies minimal requirements, a provably correct bytecode verifier.

1 Introduction

Several architectures for mobile and embedded code, including Java, JavaCard,
and .NET, feature a bytecode verifier (BCV), which performs a modular (i.e.
method per method) static analysis on compiled programs prior to their loading,
and rejects potentially insecure programs that may violate type safety, or perform
illegal memory accesses, or not respect the initialization protocol, or yield stack
underflows or overflows, etc.

The bytecode verifier is a key security function in these architectures, and
as such its design and implementation must be correct. Over the last few years,
a number of projects have been successful in proving formally that bytecode
verification is correct, in the sense that it obeys the specification of Sun. Many
of these projects were carried by smartcard industrials in the context of secu-
rity evaluations; for example, Schlumberger Cards and Terminals was recently
awarded an EAL7 Common Criteria1 certificate for their formal models of the
JavaCard platform.

1 The Common Criteria is an international evaluation scheme for the security of IT
products. It features seven evaluation assurance levels (EAL). The highest quality
levels EAL5 to EAL7 impose the use of formal methods for the modelling, specifi-
cation and verification of the product being certified.

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 99–113, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Yet such projects are labour-intensive, hence costly, and can only be con-
ducted by a few experts in formal methods. A recent roadmap on smartcard
research [1], and a recent survey of the field of Java verification [11], point to
a severe lack of methodologies, techniques and tools to conduct cost-effective
security evaluations.

Our work aims at developing tools and libraries that help validate execution
platforms for mobile and embedded code. The research reported here focuses
on specifying and proving the correctness of bytecode verification, following a
methodology that is common to many existing works in the area, see e.g. [2, 4,
5, 16]. The methodology factors the effort into two phases:

– virtual machines specification and cross-validation (VM phase): during this
first phase, one provides the specification of several virtual machines, includ-
ing a defensive virtual machine that manipulates typed values and performs
type-checking at run-time (as well as computations), and abstract virtual
machine that only manipulates types and only performs type-checking. One
also cross-validates these different virtual machines, e.g. one shows that the
abstract virtual machine detects all typing errors that may occur during the
execution of a program on the defensive virtual machine;

– bytecode verification specification and verification (BV phase): during this
second phase, one builds and validates the bytecode verifier, using the ab-
stract virtual machine defined during the VM phase. First, it involves mod-
eling a dataflow analysis – for an unspecified execution function that meets
minimal requirements. Second, it involves proving the correctness of the
analysis; essentially it amounts to showing that the analysis will reject all
programs that go wrong during execution. Third, it involves instantiating
the analysis to the virtual machine defined in the VM phase, using cross-
machine validation to establish that the VM enjoys all properties assumed for
the unspecified execution function in the definition of the dataflow analyses;
the instantiation provides a bytecode verifier, and a proof of its correctness.
Note that different algorithms may be chosen, so as to account for some ad-
vanced features, e.g. subroutines and initialization in the Java and JavaCard
platforms, or to minimize resource usage during verification, see Section 2.

In earlier work, we have been developing Jakarta, an environment which supports
the specification and cross-validation of the virtual machines [3], and offers a high
level of automation for performing the VM phase. In a nutshell, Jakarta con-
sists of a specification language JSL in which virtual machines can be described,
an abstraction engine that transforms virtual machines (e.g. that extracts an
abstract virtual machine from a defensive one), and an interface with theorem
provers, which maps JSL specifications to the prover specification language and
generates automatically correctness proofs for the cross-validation of virtual ma-
chines. We mostly use Jakarta in conjunction with the proof assistant Coq [8],
although prototypes interfaces to Isabelle [18] and PVS [20] exist2.
2 One particular reason for our choice is that French evaluation bodies recommend

the use of Coq or B to carry Common Criteria evaluations at the highest levels.
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The purpose of this paper is to complement our earlier work by providing
a modular framework for performing the BV phase. Starting from an abstract
notion of virtual machine on which we only impose minimal assumptions, we
build a parametric bytecode verifier that encompasses a large class of algorithms
for bytecode verification, and show the algorithm to be correct in the sense that
it will reject programs that may go wrong. One novelty of our framework is to
provide a high-level proof that it is sound to perform bytecode verification on
a method per method basis. Another novelty is to provide a generic bytecode
verifier that can be instantiated to several analysis including standard analyses
that only accept programs with monomorphic subroutines, set-based analyses
that accept programs with polymorphic subroutines, as well as other analyses
for which no formal correctness proof was previously known. From a more global
perspective, the combination of our framework for bytecode verification with
the Jakarta toolset yields an automated procedure to derive a certified bytecode
verifier from a reference defensive virtual machine; the procedure is applicable to
many settings, and has been successfully used to certify the JavaCard platform.
We return to these points in the conclusion.

Contents of the Paper. The remaining of the paper is organized as follows. We
begin in Section 2 with a brief introduction to Coq and its module system,
and with a brief overview of bytecode verification. We proceed in Section 3
with the basic definitions and constructions underlying bytecode verification.
Section 4 and Section 5 are respectively devoted to formalizing and certifying a
parameterized verification algorithm and compositional techniques that justify
the method-per-method verification suggested by Sun. In Section 6, we show
how the framework may be instantiated to different analyses. We conclude in
Section 7 with related work, a general perspective on our results thus far, and
directions for further research.

2 Preliminaries

2.1 Principles and Algorithms of Bytecode Verification

Bytecode verification [9, 17] is a static analysis that is performed method per
method on compiled programs prior to their loading. Its aim is to reject programs
that violate type safety, perform illegal memory accesses, do not respect the
initialization protocol, yield stack underflows or overflows, etc.

The most common implementation of bytecode verification is through a
dataflow analysis [13] instantiated to the abstract virtual machine that oper-
ates at the type level. The underlying algorithm relies on a history structure,
storing the computed abstract states for each program point, and on an uni-
fication function on states. Then, starting from the initial state for a method,
it computes a fixpoint with the abstract execution function. If the error state
does not belong to the resulting history structure then bytecode verification is
successful.
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In the standard algorithm, called monovariant analysis, the history structure
only stores one state for each program point and the unification function unifies,
performing a join on the JavaCard type lattice, the computed state (resulting
from one step of abstract execution) and the stored state. Unfortunately, this
algorithm does not accept polymorphic subroutines (subroutines called from
different program points). To handle such subroutines, the history structure must
contain a set of states for each program point. For the polyvariant analysis, the
unification function adds the computed state to the corresponding set from the
history structure. This technique needs much more memory than monovariant
analysis, however, it is possible to perform state unification rather than set
addition in most cases. This last technique, called hybrid analysis (as described
in [7, 12]), offers the best compromise between memory consumption, precision
and efficiency.

Our framework also deals with lightweight bytecode verification [19], a special
kind of verification that can fit and run in chips used for smart cards, but due
to space constraints details are omitted.

2.2 The Coq Proof Assistant

Coq [8] is a general purpose proof assistant which is based on the Calculus of
Inductive Constructions, and which features a very rich specification language
and a higher-order predicate logic. However, we only use neutral fragments of
the specification language and the logic, i.e. fragments which are common to
several proof assistants, including Isabelle and PVS. More precisely, we use first-
order logic with equality, first-order data types, structural recursive definitions,
record types, but no dependent types – except in the definition of gfp, but such
a function is also definable in Isabelle and PVS. Furthermore, Coq underlying
logic is intuitionistic, hence types need not have a decidable equality. For the
sake of readability, and because it is specific to Coq, we gloss over this issue in
our presentation3.

Modules. Our framework makes an extensive use of the interactive ML-style
modules that were recently integrated to Coq [6]. Hence we briefly review the
syntax for modules. The keyword Module Type introduces the declaration of a
type of a module, and is followed by its name, a collection a Parameter and
Axiom declarations giving its signature, and it is closed by the keyword End.
A module type can also include (and, in a certain sense, extend) other module
types with the keyword Declare Module. A module type is implemented using
the keyword Module (the module type it satisfies is specified after the nota-
tion <:). As usual, the module must fulfill the signature of the module type it
implements. Note that other modules can be given as parameters of a module.
Finally, constructions of a module can be accessed outside the module using the
dot notation of qualified names or directly with the keyword Import followed
by the module name.
3 Although our framework addresses decidability by making appropriate assumptions

in modules, we omit such assumptions in this paper.



www.manaraa.com

A Tool-Assisted Framework for Certified Bytecode Verification 103

Notations. The type of propositions is Prop, and the type of data is Set. The
types predicate A and relation A respectively denote the set of predicates
and binary relations over a type A.

We conclude with some basic definitions used throughout the paper. Given
A : Set, <A: (relation A), f : A→A and P : (predicate A), we let ≤A

denote the reflexive closure of <A and define

(monotone <A f) ≡ ∀a,a’:A.(a <A a’) →((f a) ≤A (f a’))

(decreases <A f) ≡ ∀a:A.((f a) ≤A a)

(down_closed <A P) ≡ ∀a,a’:A.(a <A a’)→(P a’)→(P a)

Finally we let (well_founded <A) state that the relation <A is well founded,
i.e. that there is no infinite decreasing chain.

3 Bytecode Verification as a Fixpoint Computation

We favour a definition that abstracts away from implementation details, and
define a bytecode verifier as a predicate that rejects programs that may go wrong.

Definition 1.

– A transition system with error (TSE) is given by a type state of states, an
execution relation exec over states, and a set err of error states. Formally,

Module Type TSE.
Parameter state : Set.
Parameter exec : (relation state).
Parameter err : (predicate state).
End TSE.

We say that a state a of a given TSE is bad, written bad a, if it can reach
an error state by successive transitions of the execution relation.

– A bytecode verifier over a module tse of type TSE is given by a predicate
check that rejects all bad states. Formally, the module BCV of bytecode veri-
fiers extends the module TSE as follows4:

Module Type BCV.
Declare Module tse: TSE. Import tse.
Parameter check : (predicate state).
Axiom ∀ a:state.(check a) →¬(bad a).
End BCV.

The standard way to build a bytecode verifier is to endorse the type of states with
a well-founded order for which execution is decreasing (to guarantee termina-
tion), and such that error states are downwards closed. If furthermore execution
is deterministic, one can compute for every state a, the greatest fixpoint b below
a; then it is sufficient to check that b is not an error state to conclude that a is
not bad.
4 Coq modules provide names for axioms, so that these axioms can later be used in

proofs. For readability we omit names of axioms in our module declarations.
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Definition 2. A fixpoint structure with errors (FSE) is given by the module

Module Type FSE.
Parameter state : Set.
Parameter exec : state → state.
Parameter err : (predicate state).
Parameter <state : (relation state).

Axiom (well_founded <state).
Axiom (decreases <state exec).
Axiom (monotone <state exec).
Axiom (down_closed <state err).
End FSE.

We can define a module functor satisfying, from a module of type FSE, the type
of the module BCV:

Module FSE2BCV [fse:FSE] <: BCV.

To do so, we first define for every state a of a FSE the greatest fixpoint gfp a

below it as

gfp a =

{
a if exec a = a

gfp (exec a) otherwise

Then, we define check a as ¬(err_state (gfp a)). As execution is monotone
and gfp a is the greatest fixpoint below a, it is clear that such a checking is
sufficient to guarantee that a is not a bad state.

4 A Parameterized Bytecode Verifier

In this section, we construct a parameterized bytecode verifier that rejects pro-
grams that may go wrong when executed with an abstract virtual machine. We
start with the definition of the latter.

Definition 3. An abstract virtual machine (AVM) is given by an ordered type
of states state endorsed with a downwards closed set of errors err, a type
of locations loc, an execution function exec, a successor function succs that
computes the successors of a state and an enumeration locs of the locations of
the program. Formally,

Module Type AVM.
Parameter state : Set.
Parameter <state : (relation state).
Parameter err : (predicate state).
Parameter loc : Set.
Parameter succs : loc → state → (list loc).
Parameter locs : (list loc).
Parameter exec : loc → state → state.

Axiom (down_closed <state err).
End AVM.
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Bytecode verification relies on stackmaps, i.e. functions that associate to every
program point a history structure. History structures can be seen as an abstrac-
tion of the mathematical set notion.

Definition 4. The module type History_Struct of history structures is pa-
rameterized by a carrier set A5 and given a type constructor hist, a projector
function hist_unit, an extension hist_less of an order on A, an decreasing
iterator hist_foldr and a membership predicate ∈hist on which we define an
existential predicate ∃hist. Formally,

Module Type History_Struct [A:Set].
Parameter hist : Set → Set.
Parameter hist_unit : A → (hist A).
Parameter hist_less : ∀ <A:(relation A). (relation (hist A)).
Parameter ∈hist : A →(hist A) →Prop.
Axiom ∀ x:A.(x ∈hist (hist_unit x)).

Parameter hist_foldr : ∀ B:Set.(A→B→B) → B→(hist A)→ B.
Axiom ∀ B:Set. ∀ f:(A →B →B). ∀ <B:(relation B).
(∀ a:A.(decreases <B (f a))) →
(∀ a:(hist A).(decreases <B (λ b:B.(hist_foldr B f b a)))).

Definition ∃hist := λ P:(predicate A) λ s:(hist A)
∃ a.(P a) ∧ (a ∈hist s).

Axiom ∀ <A:(relation A). ∀ P:(predicate A).
(down_closed <A P) →(down_closed (hist_less <A) (∃hist P)).

End History_Struct.

In the following, we will use the notation <hist
A for the extension

(hist_less <A) of a relation <A.
The definition of stackmaps is included in a module of stackmap structures.

Essentially, a stackmap structure consists of an abstract virtual machine, of a
history structure, and of a unification function that merges states and that is
decreasing and monotone w.r.t. the order inherited from the history structure.
In order to construct a fixpoint structure from a stackmap structure, we also
require histories <hist

A to be well-founded and a supremum for <A.

Definition 5. The module SMS of stackmap structures is defined as:

Module Type SMS.
Declare Module avm : Abstract_VM. Import avm.
Declare Module hs : (History_Struct state). Import hs.

Parameter unify : state → (hist state) → (hist state).
Axiom ∀ s:state.(decreases <hist

state (unify s)).
Axiom ∀ s:state.(monotone <hist

state (unify s)).
Axiom ∀ s:state.∀ s’:(hist state).(unify s s’)=s’ →
∃ y.(y ≤state s) ∧ (y ∈hist s’).

5 In reality, Coq modules type can only be parameterized by other modules, so one
has to use a module that is “isomorphic” to Set.
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Parameter � : state.
Axiom ∀ a:state.(a ≤state �).

Axiom (well_founded <hist
state).

End SMS.

One can define the type stackmap of stackmaps over a stackmap structure
sms as list (sms.avm.loc * (sms.hs.hist sms.avm.state)), and an exe-
cution function over stackmaps sms_exec: stackmap →stackmap which corre-
sponds to the recursive procedure in Kildall’s algorithm [13]. It is straightforward
to derive a fixpoint structure, and hence a bytecode verifier, for the TSE induced
by sms_exec: stackmap →stackmap. In order to conclude that the resulting
fixpoint structure also yields a bytecode verifier for the TSE induced by the
AVM, one needs to observe that the following diagram commutes:

avm.loc*avm.state

make stackmap

��

avm.exec∗avm.next �� avm.loc*avm.state

≤make stackmap

��
stackmap

sms exec �� stackmap

Here make_stackmap denotes the function that takes as input a pair 〈l, a〉, and
returns as output the stackmap in which the program point l is associated to
the singleton history hist_unit a, and every other program point is associated
to �.

5 Correctness of Bytecode Verification

In the previous section, we have shown that programs that pass bytecode veri-
fication do not go wrong when executed on an abstract virtual machine which
satisfies minimal requirements. The purpose of this section is to lift this result to
a defensive virtual machine: more precisely, we are going to show that programs
that pass bytecode verification do not go wrong when executed on a defensive
virtual machine which satisfies minimal requirements. It involves relating a de-
fensive and an abstract virtual machine, and proving that no difficulty arises
through exception handling (which is performed by the defensive virtual ma-
chine, but ignored by the abstract one), or through method invokation (which
remains within the same frame for the abstract virtual machine, as explained
below). We begin by defining defensive virtual machines.

Definition 6. A defensive virtual machine (DVM) is given by a type state of
states, an execution function exec, a type frame of frames, an accessor function
getstack that associates to each state a list of frames (i.e. its stack), another
accessor function getinstr that associates to each state the nature of the next
execution to be executed, and a set err_frame of error frames. Formally,
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Module Type DVM.
Parameter state : Set.
Parameter exec : state → state.
Parameter frame : Set.
Parameter getstack : state → (list frame).
Parameter getinstr : state → type_of_instr.
Parameter err_frame : (predicate frame).
End DVM.

The function getinstr distinguishes between 4 cases: execution is intra-
procedural sameframe (that acts only in the current frame, e.g. for arithmetic in-
struction, branching instruction, etc), execution is a method invokation invoke;
execution is a return step return (pops a frame); or execution raises an excep-
tion exception.

We now turn to formulating a set of general properties about method in-
vokation and exception handling, and proving that such properties ensure that
programs that pass bytecode verification will not go wrong. These properties
involve an abstract virtual machine and an abstraction function.

Abstract Virtual Machine. We assume given an abstract virtual machine avm,
with a function init that returns for each method or exception the correspond-
ing initial state. Furthermore, we assume given a decomposition of abstract
method invokation in two functions, so as to be able to simulate the modifi-
cations made by the concrete virtual machine on a frame when the control flow
is given to the invoked method and when it returns to the invoker method.
Formally, we assume given two functions exec_invk and exec_ret whose com-
position is equal to avm.exec for states a such that getinstr a = invoke.

Abstraction Function. We assume given a function that maps a frame to an
abstract state and a location α: dvm.frame →avm.state. The function is ex-
tended a function β: dvm.state →avm.state. on defensive states by abstract-
ing the topmost frame of the stack (if the stack is empty, we return a default
error value).

Safe States. We now turn to the definition of safe abstract states. A abstract
state will be safe if it is greater than a state belonging to the history structure
computed by the abstract bytecode verifier at the location of the given state.
This notion is extended to defensive frames by abstraction.

The notion of safety for a defensive state must guarantee that the stack is
well-formed, i.e. that all the frames below the top one are in an “intermediate”
state which is not reached by the abstract virtual machine until the invoked
method returns. Then, a defensive state s will be safe if lstinline!getstack s = []
! or if getstack a = f::lf and each frame in lf is of the form exec_invk f’

where f’ is a safe frame.
We now show that safe states are closed under execution and are not bad.
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Lemma 1. Let s be a defensive state. Suppose:

– if getinstr s = sameframe, then the following property holds:

(avm.exec (β s)) ≤state(β (dvm.exec s))

– if getinstr s = invoke and getstack s = f::lf, then the following
properties hold:

∃ f’:frame. getstack (dvm.exec f’) = f’::(exec_add f)::lf

(init (β s)) ≤state(β s)

– if getinstr s = return and getstack (dvm.exec s) = f::lf, then
there exists two frames f’ and f’’ such that the following properties hold:

getstack s = f’::f’’::lf

(aexec_ret (α f’’)) ≤state(α f)

– if getinstr s = exception and getstack s = f::(lf@lf’), then the
following properties hold:

∃ f’:frame. getstack s = f’::lf’

(init (β s)) ≤state(β s)

If furthermore s is safe, then dvm.exec s is also safe.

This lemma if proved using properties on the bytecode verifier and property
on exec_invk and exec_ret w.r.t. avm.exec. Then one can easily construct a
bytecode verifier for a defensive virtual machine dvm. Formally, from a module
type Comp_Struct, that contains all the assumptions of Lemma 1, we are able
to define a functor module BCV_dexec satisfying the module type BCV for the
execution dvm.exec. The function check of the module type BCV is defined
assuming that the given defensive state is safe and that the result of bytecode
verification for all initial states (methods and exceptions) of the program does
not contain an error state. Finally, by Lemma 1, we can prove the property
check_ok of the module type BCV, stating that if the verification check was
successful, we can not reach with the defensive virtual machine an error state.

6 Instantiation of History Structures

The previous section describes the construction of a correct bytecode verifier
for a defensive virtual machine. The construction is parameterized by a struc-
ture that records the history of the computations performed by the verifier. The
purpose of this section is to present different instantiations of our framework,
focusing on different choices of history structures that correspond to the algo-
rithms described in Section 2. We use these instantiations as convenient entry
points in our formalization, see Subsection 7.2.
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Monovariant Analysis. A monovariant analysis (MA) is given by a well-
founded order on states with a supremum, and by proofs that the execution
function is monotone w.r.t. the order on states and the unification is decreasing
and monotone. Formally,

Module Type Monovariant_Analysis_Struct.
Declare Module avm : Abstract_VM. Import avm.

Parameter unify : state → state → state.

Axiom ∀ s:state.(decreases <state (unify s)).
Axiom ∀ s:state.(monotone <state (unify s)).
Axiom ∀ s,s’:state.(unify s s’)=s’ →∃ y.(y ≤state s) ∧ (y ∈hist s’).

Parameter � : state.
Axiom ∀ a:state.(a ≤state �).

Axiom (well_founded <state).
Axiom ∀ l:loc.(monotone <state (exec l)).
End Monovariant_Analysis_Struct.

The construction of a stackmap structure from a monovariant analysis is done
by a functor module Monovariant_Analysis from the previous module type
definition. It mainly proceeds by instantiating the parametric history structure
to the identity history structure, in which hist A is defined as A, and the other
fields are instantiated in the obvious way.

Polyvariant Analysis. A polyvariant analysis is given by a natural number
max_length_set that fixes the maximal size of the set of abstract states asso-
ciated to each program point, by a supremum state �, by an error state err_st
and by a proof that execution is monotone. Formally,

Module Type Polyvariant_Analysis_Struct.
Declare Module avm : Abstract_VM. Import avm.

Parameter max_length_set : nat.
Parameter err_st : state.
Axiom (err err_st).
Parameter � : state.
Axiom ∀ a:state.(a ≤state �).

Axiom ∀ l:loc.(monotone <state (exec l)).
End Polyvariant_Analysis_Struct.

One proceeds by instantiating the history structure in such a way that hist A

is defined as the set of elements of A of cardinal less than max_length_set (the
other fields are instantiated in the obvious way). Then, this module is used with
the functor Polyvariant_Analysis to construct a stackmap structure, defining
the function unify as:
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λ a:state λ s:(hist state)
(if ((set_size (set_add a s)) < max_length_set)
then (set_add a s)
else (set_add err_st s))

In that case, hist_less does not use the order <state and is defined as set
inclusion. It is interesting to notice that the polyvariant analysis is by far the
simplest algorithm to instantiate.

Hybrid Analysis. An hybrid analysis is given combining elements needed
by monovariant and hybrid analysis and adding an optimization function
opt_unify to discriminate in which cases the unification of states must take
place. Formally,

Module Type Hybrid_Analysis_Struct.
Declare Module avm : Abstract_VM. Import avm.

Parameter opt_unify : state → state → bool.
Parameter unify : state → state → state.

Axiom ∀ s:state.(decreases <state (unify s)).
Axiom ∀ s:state.(monotone <state (unify s)).
Axiom ∀ s,s’:state.(unify s s’)=s’ →∃ y.(y ≤state s) ∧ (y ∈hist s’).

Parameter max_length_set : nat.
Parameter err_st : state.
Axiom (err err_st).
Parameter � : state.
Axiom ∀ a:state.(a ≤state �).

Axiom (well_founded <state).
Axiom ∀ l:loc.(monotone <state (exec l)).
End Hybrid_Analysis_Struct.

The same history structure as polyvariant analysis is used for the hybrid analysis.
The function unify is then defined as follow :

λ a:state λ s:(hist state)
(Case (set_map_bool opt_unify unify a s) of
(Some res) ⇒ res |
None ⇒ (if ((set_size (set_add a s)) < max_length_set)

then (set_add a s)
else (set_add err_st s))

end)

where set_map_bool ranges over elements of s, performs unification depending
on the result of opt_unify and returns the resulting set if unification has oc-
curred or None otherwise. In that case, hist_less combines the order <state on
states and set inclusion.
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7 Conclusions

7.1 Related Work

As mentioned in the introduction, there is a considerable body of machine-
checked specifications of execution platforms such as the JVM or .NET, many
of which use the methodology instrumented in our work. A notable exception is
the extensive account of bytecode verification developed by Klein, Nipkow, and
Wildermoser [14, 15] using the proof assistant Isabelle [18]. For lack of space, we
refer the reader to [11,17] for a more comprehensive account of related work.

There are also machine-checked proofs of type soundness for .NET [10, 21].
This work is more closely related to ours in the sense that [21] explicitly aims at
developing tools to automate type soundness proofs. The major difference with
our work is that they do not pursue cross-machine validation, and opt instead
for a standard type soundness proof.

7.2 Perspectives

We have develop a general framework that establishes the correctness of a param-
eterized bytecode verifier, and justifies the compositional techniques of bytecode
verification. The framework has been instantiated for specific history structures
that are often considered in the literature and implementations. These instan-
tiations provide convenient entry points to our framework, and can be used in
combination with Jakarta to build and validate bytecode verifiers with a high
degree of automation. As illustrated in Figure 1, such a combination requires
the user to provide:

– a defensive virtual machine;
– the definition of abstraction functions, in the form of Jakarta abstraction

scripts, that are used to construct the abstract virtual machine and an of-
fensive virtual machine6. Scripts may contain some minimal amount of proof
information to carry cross-machine validation;

– a formal proof of the correctness w.r.t. bytecode verification of method
invokation and exception handling, i.e. an instantiation of the module
Struct_Comp of Section 5;

– an instantiation of the history modules to the abstract virtual machine gen-
erated by Jakarta;

and returns an offensive virtual machine, several bytecode verifiers, and a proof
that these bytecode verifiers are correct, in the sense that they will reject pro-
grams that go wrong on the defensive virtual machine, and that the offensive and
defensive virtual machines coincide on programs that are accepted by bytecode
verification.

Such a combination has been used to good purpose for validating the JavaC-
ard platform. Using Jakarta, we have generated from a defensive virtual machine
6 Such a machine manipulates untyped values, and relies on the bytecode verifier to

detect programs that may go wrong.
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Fig. 1. Framework architecture

(10,000 lines of code), both an abstract and an offensive virtual machine (5,000
lines of code each), as well as more than 10,000 lines of proof scripts that es-
tablish cross-machine validation and the monotonicity of the generated abstract
virtual machine. We have provided another 1,500 lines of proof scripts which
concern the correctness w.r.t. bytecode verification of method invokation and
exception handling. Together with the output of Jakarta, these 1,500 lines pro-
vide all relevant information for the bytecode verifier to be proved correct –
without any further user interaction.

As to future work, we plan to instantiate our framework to enhanced bytecode
verifiers that guarantee a stronger security of applications. Indeed, there have
been many proposals of type systems for the JVM that provide stronger guar-
antees with respect to safety and security, and it would be interesting to adapt
our virtual machine specifications to such type systems, and use the framework
described here to derive certified bytecode verifiers based on these type systems.
In fact, we have started modeling a defensive JVM machine for an information
flow type system7, and intend to use the framework described in this paper, in
combination with Jakarta, to build and validate a bytecode verifier for informa-
tion flow. Likewise, it would be interesting to apply our methodology to other
execution platforms, such as the .NET platform.
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Abstract. The Java dialect Java Card for programming smartcards
contains some features which do not exist in Java. Java Card distin-
guishes persistent and transient data (data stored in EEPROM and
RAM, respectively). Because power to a smartcard can suddenly be in-
terrupted by a so-called card tear, by someone removing the smartcard
from the reader, Java Card provides a notion of transaction to ensure
that updates of multiple fields in persistent memory can be performed
atomically. This paper describes a way to reason about these Java Card
specific language features.

1 Introduction

The Java Card language for programming smartcards has attracted a lot of at-
tention in the formal methods community, especially people working on formal
methods for Java. In many respects, it provides an ideal target for formal meth-
ods: the language and its API are simple, programs are very small, and their
correctness is critical.

However, although the Java Card programming language for smartcards is
usually presented as a subset of Java, Java Card has several features in addition
to standard Java, which are specific to smartcards. First, Java Card distinguishes
the two kinds of memory that are available on smartcards, persistent (EEPROM)
and transient (RAM). Second, because a smartcard can be subject to a sudden
loss of power due to a so-called card tear – namely when the card is removed from
the reader – Java Card offers a transaction mechanism similar to that found in
databases; this enables a programmer to ensure that several updates to memory
are performed atomically, i.e. either all the updates are performed or none is.
There are more Java Card specific features, but we do not take them into account
in this paper.

To accurately reason about the behavior of Java Card programs – and to do
program verification – these additional features should be taken into account.
Most work on the verification of Java Card programs, with the exception of [1],
ignores these special features. Given the complexities of program verification,
this can certainly be justified for pragmatic reasons: before we try to verify that
a program is correct in the presence of potential card tears, it makes sense to
first verify its correctness under the simplifying assumption that no card tears

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 114–128, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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occur and no transactions are ever aborted. However, ultimately we would like
to be able to reason about such Java Card features, and this is what we set out
to do in this paper.

The context of this work is the verification of Java programs that have been
specified with JML [2], using the LOOP tool in combination with the theorem
prover PVS. The verification of programs with the LOOP tool ultimately relies
on a denotational semantics of Java and JML, for which a Hoare logic and
weakest precondition calculus have been developed. In short, the LOOP tool
compiles JML annotated Java source code into PVS theories. Proving these
theories in PVS implies that it is formally verified that the Java program behaves
the way it is specified in JML. For a more detailed overview of this LOOP project,
see [3]. One of the achievements of this work has been that a commercial Java
Card application has been completely verified, showing that such verifications of
real Java Card programs are feasible. Still, our verifications ignore the possibility
of card tears, so our next challenge is to take this into account.

To reason about card tears and transactions we need a formal semantics of
these features (or a programming logic which takes them into account). Rather
than defining a semantics of Java Card including these features from scratch,
we will try to desugar Java Card programs with their special features into con-
ventional Java programs, effectively modeling card tears and transactions inside
Java. The central trick we use here is that we model card tears as special ex-
ceptions, a trick also used in [4,5]. Such a modular approach has several benefits
(provided it is successful of course...): it is less work, it is easier to understand,
and because it is independent of a particular semantics or programming logic
for Java, it will be applicable in many other settings, not just the particular
semantics and programming logic of Java that is used in the LOOP project.
Modularity is not just a desirable quality for programs, but also for theories
about programming languages!

The organization of the rest of this paper is as follows: Sect. 2 explains the
peculiarities of Java Card that we want to reason about. Sect. 3, 4 and 5 describe
our approach in detail. Sect. 6 says something about the implementation of our
idea.

2 Card Tears and Transactions in Java Card

In this section we briefly explain the peculiarities of Java Card as opposed to Java
when it comes to card tears and transactions. For a more complete explanation,
see [6] or the Java Card Runtime Environment (JCRE) specification [7].

Persistent vs. Transient Memory. Java Card distinguishes two kinds of
memory that are available on smartcards, persistent (EEPROM) and transient
(RAM)1. The main difference is that persistent memory will keep its value when
1 Smartcards will also have ROM, which is used for pre-installed program code, but

this is of no concern to the Java Card programmer.
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power is switched off. Java Card objects and their fields are allocated in EEP-
ROM, so the fields of objects will keep their value during a power loss. However,
the Java Card API offers methods to allocate arrays in RAM, so-called transient
arrays. If a field is a transient array, then the contents of this array are lost
as soon as power is lost, but the field itself, which is a reference to the piece
of RAM allocated for the array, keeps its value as this is stored in EEPROM.
Reasons for using RAM rather than EEPROM for (array) field are efficiency –
reading and writing RAM is quicker than EEPROM –, the limited lifetime of
EEPROM – EEPROM can only support a limited number of writes before the
chips stops functioning –, and security – data kept in RAM is harder to spy
out and moreover it is lost as soon as power is lost2. The stack is also stored in
RAM, so the parameters and result of method calls and local variables are all
lost as soon as power is lost.

Card Tears. In many card readers it is possible to tear the smartcard out of
the reader while it is in operation. Such a so-called card tear results in a sudden
loss of power. All data stored in RAM is lost when such a card tear occurs.
The Java Card platform incorporates a special clean-up when power supply is
restored, before any normal action applet operation takes place.

Transactions. To cope with card tears, the Java Card API offers a so-called
transaction mechanism. This can be used to ensure that several updates to
persistent memory are executed as a single atomic operation, i.e. either all
updates are performed or none at all. The Java Card API offers three meth-
ods for this: beginTransaction, commitTransaction and abortTransaction.
After a beginTransaction all changes to persistent data are executed con-
ditionally. Note that changes to transient data, including local variables, are
executed unconditionally. The transaction is ended by commitTransaction or
abortTransaction; in the former case the updates are committed, in the latter
case the updates are discarded. If a card tear occurs during a transaction, any
updates to persistent data done during that transaction are discarded. This in
fact happens the next time the smartcard powers up during the special clean-up
mentioned before.

Example 1 (Java Card sample). Fig. 1 illustrates the use of the transaction
mechanism, the use of the API method for allocating a transient array, and
the use of JML to specify invariants and postconditions.

Every object of class A has a persistent field p and a field t that is a transient
array of length 1. This means that whenever the smartcard loses power, the
contents of t[0] is lost, but p and t itself –i.e. the pointer to the position in the
RAM memory where t[0] is stored– keep their value.

2 Indeed, for security reasons, the contents of transient arrays can also be cleared
automatically at certain events other than card tears, e.g. the de-selection of an
applet.
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class A {
// persistent field p, allocated in EEPROM
byte p;
//@ invariant p % 2 == 0 && 0<= p && p < 10;

// transient array t , so t [0] is allocated in RAM
byte[] t = makeTransientByteArray(1,CLEAR ON RESET);
//@ invariant t != null && t.length == 1;
//@ invariant t[0] % 2 == 0;

//@ ensures p == \old(p)+2 && t[0] == \old(t[0])+2;
void m() {

beginTransaction();
p++; t[0]++; p++;
if (p < 10) commitTransaction();

else abortTransaction();
t[0]++;
}

}

Fig. 1. Example program using transactions and transient data, with JML specification

There are four JML annotations in the example, written as comments starting
with //@. This includes three invariants stating that p is even, that t is not
null and has always length 1 and that t[0] is also even. This also includes
one postcondition (ensures clause) for method m, stating that the method will
increase the values of p and t[0] by 2. The use of the transaction guarantees
that the invariant for p will not be broken if the method m is interrupted by a
card tear. The treatment of transient memory makes sure that the invariants
for t are not broken by a card tear. Note that the postcondition only relates
to normal termination of the method, and does not say anything about what
happens if the method ‘aborts’ because of a card tear.

Incorrect use of this mechanism can result in a TransactionException being
thrown:

– The transactions cannot be nested. So if a new beginTransaction is called
within another transaction a TransactionException is thrown. Likewise
such an exception is thrown if a commitTransaction or abortTransaction
is called while there is no transaction in progress.
Reasoning about this requires no special machinery, as specifications for
enforcing the correct use of the methods for beginning or ending transactions
can easily be expressed in JML.

– A TransactionException is also thrown if certain hardware limitations are
exceeded. Only a finite amount of storage, called the commit buffer, is avail-
able to keep track of the conditional updates done during a transaction. The
size of this commit buffer depends on the specific smartcard hardware. If
there are too many updates inside a transaction, and the available space in
the commit buffer is exhausted, again a TransactionException is thrown.
We will ignore the possibility of exhausting the commit buffer, and the result-
ing TransactionException. Proving that this never happens is best done in
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an ad-hoc manner, i.e. by counting the maximum number of bytes needed in
the commit buffer for every transaction in a program and checking that this
does not exceed the space of the commit buffer. Including this in a general
program logic would be overly complicated. Also, how much space needed in
the commit buffer for the bookkeeping associated with an individual update
will be specific to the particular implementation of the platform and/or the
underlying hardware.

Some (native) classes in the Java Card API provide persistent data which
is not subjected to card tears: the counter associated with a PIN object, which
keeps track of how many incorrect PINs have been entered, is not restored in
the event of a card tear. Otherwise the transaction mechanism might allow an
unlimited number of guesses for the PIN code.

2.1 What Can Go Wrong, and How to Avoid It

Before we consider ways of describing the semantics of card tears and transac-
tions, and how this might be used as a basis for reasoning about these language
features, we first approach the issue from a different angle, by investigating what
can go wrong if code is subjected to card tears or if it contains transactions, and
what could we do to avoid these problems. Or, in other words, what are the prop-
erties that we fail to establish in our current verifications of Java Card code, but
which we would like to be able to prove.

Invariants. Invariants usually play a crucial role in ensuring that a piece of
code behaves correctly. When a card tear occurs, invariants may be left
broken as a result. After all, invariants may temporarily be broken during
the execution of a method.
Typically, the transaction mechanism is used to prevent card tears from
disturbing invariants that involve persistent data, as in Fig. 1.

Postconditions. Just ensuring that invariants are not left broken as a result
of a card tear may not be enough to ensure that a method is correct. We
may want to establish additional properties. For example, in our example in
Fig. 1, we might want to ensure that if method m is interrupted by a card
tear, it will either leave p unchanged of increase p by 2, and not say reset p
to 0, which is allowed by the invariant; in this case we would like to establish
p == \old(p) || p == \old(p)+2 as postcondition of m in the event of a
card tear.

There are two mechanisms that we can use to ensure that an invariant is not
left broken (c.q. an additional postcondition is met) after a card tear occurs:

– the transaction mechanism; e.g., in Fig. 1, the transaction mechanism ensures
that the invariant for p is maintained in the event of a card tear.

– the clearing of transient memory; e.g., in Fig. 1, the clearing of transient
memory ensures that the invariant for t[0] is maintained (or, rather, re-
established) in the event of a card tear.
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The former mechanism is only relevant if an invariant (postcondition) involves
transient data, the second mechanism is only relevant if it involves persistent
data.

Given the nature of transient data, and the fact that transient data typically
serves as scratch-pad memory, it is unlikely that we will be interested in any
invariants or postconditions involving transient data. (Indeed, the whole idea of
an invariant seems at odds with the notion of transient memory.) So, for many
Java Card applications, it will not be necessary to take the clearing of transient
memory into account to establish their correctness.

Invariants which only depend on persistent memory can be dealt without
trying to formalize the transaction mechanism, in two ways:

– Ensure that an invariant is never broken.
It may seem an overly simplistic approach, but in practice, many invari-
ants are never broken. For example, in Fig. 1, the invariant t !=null &&
t.length == 1 will never be broken. This is the approach taken in [1].
Still, one has to be careful about the notion level of atomicity here. E.g.,
an invariant a == b will be temporarily broken during the execution of the
statement int x = (a++) + (b++), even though the invariant will hold be-
fore and after execution of the statement if there are no card tears. When
reasoning at the level of source code our notion of atomicity will be coarser
than what it really is.

– Ensure that the invariant is never broken outside a transaction.
Some invariants will have to be temporarily broken. (E.g. if we are updating
two fields and there is an invariant expressing a relationship between these
fields, the invariant will typically be broken after updating the first of these
fields.) If these invariant involves persistent data, then this should be done
inside a transaction.

3 Modeling Card Tears

To model card tears inside Java we use the same trick used in [4,5], i.e. card
tears are modeled as a special kind of exception, which can arise at any moment
during execution. Like an exception, a card tear is effectively an abrupt change
of the flow of control. A difference is that whereas an exception can be caught,
a card tear cannot be caught, as there is no VM executing that could execute
an exception handler. However, conceptually we can consider the recovery to a
card tear that happens the next time the card powers up (i.e. the undoing of
any unfinished transaction and the clearing of all transient data) as the excep-
tion handler for a card tear exception. We introduce a special exception class
CardTearException for modeling card tears3.
3 Strictly speaking, CardTearException should not be an Exception, but rather an
Error, because we clearly do not want CardTearExceptions to be caught by any
existing try-catch blocks in a program. However, using Error would introduce a
problem in JML.
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3.1 Throwing a CardTearException

There are several ways to account for the possibility of a CardTearException
being thrown at any moment during execution, namely at syntactical level, at
semantic level, or at logical level:

a). One possibility is to do this purely syntactically, by desugaring any sequence
of statements, e.g.

S1; S2;

to include calls to a method possibleCardTear before and after each state-
ment, e.g.

possibleCardTear(); S1; possibleCardTear(); S2; possibleCardTear();

where possibleCardTear is a method which either performs a skip, or
throws a CardTearException. We can even give a possible implementation
of this method possibleCardTear in Java, for instance

possibleCardTear() {
if (cardtear counter−− < 0) throw new CardTearException();

}

where cardtear_counter is a global (i.e. final static) variable, initialized to
an unknown value.
Such a syntactic approach has its limitations, namely the level of atomicity
of statements that we can distinguish at the level of source code syntax. This
notion of atomicity is coarser than it is in reality. E.g. in the example above
we treat the statements Si as atomic, whereas in reality only individual
byte code operations are atomic. For example, a statement such as int x =
(a++) + (b++) would have to be rewritten into a++; b++; int x=a+b; if
we want to include possible card tears after incrementing a or b4.

b). Instead of modeling the possibility of card tears syntactically, as sketched
above, an alternative would be to redefine our semantics of Java to include
card tears. For instance, in the LOOP project we use a denotational seman-
tics, and we could redefine the semantics of composition ; and increment
operation ++ to include the possibility of an exception being thrown. Effec-
tively, this comes down to for instance changing the semantics of composition
; to the composition of ;̂, where S1;̂S2 is defined as

possibleCardTear();S1; possibleCardTear();S2; possibleCardTear();

c). Another possibility of modeling card tears is at the logical level, i.e. in the
logic used to reason about programs. For instance, if our reasoning about
Java programs uses some Hoare logic, we could adapt all Hoare rules to allow
for the possibility of card tears. Effectively, this comes down to for instance
replacing the Hoare rule for composition ; by the Hoare rule for ;̂.

4 Still, Java Card does not support the data types double and long, for which assign-
ments are by definition non-atomic; see [8], section 17.4.
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For the remainder of this paper, we leave it open which of the mechanisms above
is used to model the possibility of card tears. Clearly, introducing explicit calls to
possibleCardTear() at all program points quickly makes programs unreadable,
so we prefer to leave the possibility of card tears being thrown implicit.

3.2 Specification and Verification Using CardTearException

Modeling card tears as exceptions is useful both when it comes to verifying and
specifying Java Card code.

An invariant in JML has to hold if a method throws an exception. So an
immediate consequence of modeling card tears as exceptions is that to verify a
method we must ensure that invariants hold at every program point, as discussed
earlier in Sect. 2 (and as in the approach of [1]).

Another advantage of treating card tears as exceptions is that it becomes
possible to specify the behavior in the event of a card tear in JML, as mentioned
as a wish in Sect. 1. This is not possible in the approach of [1]. For example, we
could specify the behavior of the method m from Fig. 1 as follows:

//@ ensures p == \old(p)+2 && t[0] == \old(t[0])+2;
//@ signals (CardTearException) (p == \old(p) || p == \old(p)+2)
//@ && t[0] == 0;
void m() throws CardTearException{ ... }

Here the JML keyword signals is used to specify an exceptional postcondition,
i.e. a condition that should hold after a certain exception occurs. Note that here
we assume that the undoing of any unfinished transaction and the resetting of
the transient memory occurs immediately after a card tear occurs, so that this
has occurred before we exit the method.

Example 2 (specifications for arrayCopy(NonAtomic)). More example specifi-
cations that use the notion of CardTearException are given in Fig. 2. Here
specifications are given for the Java Card API methods arrayCopy and array-
CopyNonAtomic. These two methods are interesting examples because the only
difference between them is what happens when a card tear occurs during their
execution. The former method is atomic, so either all array entries are copied, or
none are. The latter method is not atomic, so some array entries may be copied
whereas others are not. The JML specifications in Fig. 2, more in particular
the signals clauses, make this difference precise. Note that the specification
of arrayCopyNonAtomic makes no assumptions on the order in which the array
elements are copied.

4 Modeling the Clearing of Transient Memory

We now consider how to model the clearing of transient memory in the event of
a card tear. Because transient data is completely unaffected by transactions, we
can consider this issue in isolation, without taking into account how we model
the transaction mechanism.
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/∗@ requires src != null && dest != null &&
@ srcOff >= 0 && destOff >= 0 && length >= 0 &&
@ srcOff+length <= src.length && destOff+length <= dest.length;
@
@ assignable dest[destOff..destOff+length−1];
@
@ ensures (\forall short i; 0 <= i && i < length
@ ; dest[destOff+i] == \old(src[srcOff+i]));
@ signals (CardTearException)
@ (\forall short i; 0 <= i && i < length
@ ; dest[destOff+i] == \old(src[srcOff+i]))
@ || (\ forall short i; 0 <= i && i < length
@ ; dest[destOff+i] == \old(dest[destOff+i]));
@∗/

native public static final short arrayCopy(byte[] src,
short srcOff ,
byte[] dest,
short destOff,
short length);

/∗@ requires ...
@ assignable ...
@ ensures ...
@
@ signals (CardTearException)
@ (\forall short i; 0 <= i && i < length
@ ; dest[destOff+i] == \old(src[srcOff+i])
@ || dest[destOff+i] == \old(dest[destOff+i]) );
@∗/

native public static final short arrayCopyNonAtomic(byte[] src,
short srcOff ,
byte[] dest,
short destOff,
short length);

Fig. 2. JML specifications for the API methods arrayCopy and arrayCopyNonAtomic.
In the latter only the differences with the former are shown.

We model the clearing of transient memory by enclosing every method in a
try-catch, where in the catch the transient memory is cleared, i.e. reset to the
initial default for that type. For the code from Fig. 1, this desugaring results in:

class A {
// persistent field p, allocated in EEPROM
byte p;
//@ invariant p % 2 == 0 && 0<= p && p < 10;

// transient array t , so t [0] is allocated in RAM
byte[] t = makeTransientByteArray(1,CLEAR ON RESET);
//@ invariant t != null && t.length == 1;
//@ invariant t[0] % 2 == 0;

//@ ensures p == \old(p)+2 && t[0] == \old(t[0])+2;
void m() {

try {
beginTransaction();
p++; t[0]++; p++;
if (p < 10) commitTransaction();

else abortTransaction();
t[0]++;

}
catch (CardTearException e) {

for (int i = 0; i < t.length ; i++) t[i ] = 0; // clear transient array t
throw e; // re−throw the exception

}
}

}
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Note that in this particular example the explicit clearing of the transient array
t in the event of a CardTearException will re-establish the invariant t[0] % 2
== 0.

One subtlety in the desugaring above is that during the clearing of transient
memory in the catch block we do not want to allow card tears.

The only question in this desugaring is deciding which transient arrays a
method should clear. The easiest way to decide this is to look at the postcondi-
tions (i.e. the ensures and signals clauses in conjunction with any invariants)
that we want to prove for the method. Letting every method clear only the
transient fields mentioned in its postconditions is sufficient. If a method calls
another method, and a card tear occurs in this inner method call, this may lead
to transient arrays being cleared several times, but as this clearing is clearly an
idempotent operation, this is not a problem.

The only problem that can arise is when a specification refers to a transient
field of another object to which the current object does not have access. In JML
specifications the normal visibility constraints imposed by the Java modifiers
(such as private or protected) can be loosened up, so it is possible for a JML
specification of a method to mention a transient field o.t[0] of some other
object o even though this field is not accessible from within that method. To
cope with this, the object o in question would have to be extended to provide a
method clearTransients() that clears its transient fields.

We should stress again that in Java Card applets transient data typically
serves as scratch-pad memory, so that it is unlikely that we are interested in any
invariants or postconditions involving transient data.

Note that both specifications in Fig. 2 exclude the effect of clearing transient
memory: the signals clauses of arrayCopy and arrayCopyNonAtomic do not
state that if dest or src are transient arrays their contents will have been cleared
in the event of a card tear. We could modify the specifications to include this,
by introducing a further case distinction in the signals clause on whether the
arrays in question are transient or not, and including

(JCSystem.isTransient(dest) != JCSystem.NOT A TRANSIENT OBJECT)
==>
(\forall i; 0 <= i && i < dest.length; dest[ i] == 0)

in the signals clause, and a similar statement for src. Here we use the Java
Card API method isTransient, which can be use to test if an array is transient.

However, conceptually it is much more convenient not to make arrayCopy
or arrayCopyNonAtomic responsible for clearing the arrays src and dest if they
are transient, but to leave it up to the methods calling arrayCopy(NonAtomic).

5 Modeling Transactions

We now turn to the issue of modeling transactions in Java. This comes down
to the question of how conditional updates to persistent fields can be modeled
in such a way that they can be undone in the event of an aborted transaction,
caused by a card tear or by an invocation of abortTransaction. We do this by
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mimicking the way this can be implemented in hardware. Such an implemen-
tation involves some extra bookkeeping for persistent fields that are changed
during a transaction. Two values will have to be recorded for these fields: the
‘new’, updated value, as well as the ‘old’ value the field had at the start of the
transaction. There are roughly two strategies for doing this, as discussed in [9].
Suppose a persistent field x is modified during a transaction. One strategy, the
optimistic strategy, is to log the old value of x at the beginning of the transac-
tion, and use the logged value in the event of an aborted transaction to restore x
to its original value. The other, pessimistic, strategy is to work on a temporary
copy of a persistent field x during the transaction, and copy this updated ver-
sion of x back to x when the transaction is committed. The optimistic approach
entails some extra work in case the transaction is aborted, the pessimistic ap-
proach entails some extra work in case the transaction is committed. The Sun
specification does not say anything which rules out or favors one of these two
approaches. We will use the optimistic approach, introducing an extra ‘backup’
field xbak for every field x, but we could just as easily have used the pessimistic
approach.

Below we show how the code given in Fig. 1 can be desugared to model the
transaction in this way. As discussed in Sect. 3, we assume that at anytime the
special CardTearException can be thrown.

class A {
byte p = 0;
byte pbak; // backup value of p
//@ invariant p % 2 == 0 && 0 <= p && p <= 10;

byte[] t = makeTransientByteArray(1,CLEAR ON RESET);
//@ invariant t != null && t.length == 1;
//@ invariant t[0] % 2 == 0;

static boolean inTransaction = false;

//@ ensures p == \old(p)+2;
//@ signals (CardTearException) p == \old(p) || p == \old(p)+2;
void m() {
try {

pbak = p; // backup p
if (inTransaction) TransactionException.throwIt(IN PROGRESS)
inTransaction = true; // begin transaction
p++; t[0]++; p++;
if (p < 10)

inTransaction = false; // commit transaction
else {

p = pbak; // restore old value of p
inTransaction = false; // abort transaction

}
t[0]++;

} catch (CardTearException e) {
if (inTransaction) {

p = pbak; // restore old value of p
for (int i = 0; i < t.length ; i++) t[i ] = 0; // clear transient array t
throw e; // re−throw the exception

}
}

}
}
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The changes to the code are:

– An extra field pbak is introduced for the bookkeeping of the old value of p
during a transaction.

– A static field (i.e. a global variable) inTransaction is introduced to record
whether a transaction is in progress or not.

– The entire method is included in a try-catch construction, which, in case
of a card tear, undoes the effects of any transaction if a transaction was in
progress.

– Any calls to begin-, commit-, and abortTransaction are replaced by a code
fragments which set inTransaction, and backup or restore the value of p.

In general, at the place where the commit- or abortTransaction we should check
that a transaction is indeed in progress, or else throw a TransactionException,
by including

if (! inTransaction) TransactionException.throwIt(NOT IN PROGRESS);

We have omitted this in the example above because it is obvious that here this
situation does not arise.

One subtlety in the desugaring above is that during the bookkeeping associ-
ated with restoring an aborted transaction we should not allow card tears.

Although the example above is a very simple one, we believe that this desug-
aring of transactions can be used for most Java Card programs.

Similar to the modeling of the clearing of transient memory, the only difficult
issue in this desugaring of transactions is deciding for which persistent fields
should be restored. This issue can be solved in exactly the same way: only
the persistent fields mentioned in the invariant and pre- and postconditions are
relevant for the verification of an individual method, and only for these do we
have to restore the old values in the event of a card tear, i.e. in catch block at
the end of a method, and in the event of an abortTransaction. If a method calls
another method, and a card tear occurs in this inner method call, this may lead
to persistent fields being restored several times, but as this restoring is clearly
an idempotent operation, this is not a problem.

Similar to the modeling of the clearing of transient memory, the only prob-
lem that can arise is when a specification refers to a persistent field of another
object to which the current object does not have access. As we have mentioned
before in JML specifications the normal visibility constraints imposed by the
Java modifiers can be loosened up, so it is possible for a JML specification of a
method to mention a persistent field o.p of some other object o even though this
field is not accessible from within that method. To cope with this, the object o in
question would have to be extended to provide methods backupPersistents()
and restorePersistents() to backup and restore the values of its persistent
fields.
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6 Implementation

Figure 3 provides an overview of our project. We have described how the pre-
processor can simulate some Java Card issues into a Java model. So far, we have
not tried to mechanize the desugaring we have introduced in this paper.

LOOP compiler

PVS
Theory

(.pvs)

PVS

JavaCard

(.java)

Preprocessor

Other prooftool systems

Explicit
Card Tears

Java

(.java)

Fig. 3. Inbedding of Java Card transactions into Java based proof checking systems

It is quite easy to do the desugaring for the clearing of transient memory and
for transactions by hand. The main question is how to deal with possibleCard-
Tear. As discussed in Sect. 3.1, there are three ways of dealing with this. The
last two of these, i.e. b) and c), require a large amount of work, namely redefining
the semantics of all Java Card constructs, reformulating and reproving all Hoare
rule, or redefining the whole weakest precondition strategy. In our LOOP/PVS
setting the amount of work needed would be huge. Therefore it seems most
practical to go for the syntactical approach a).

Furthermore, when verifying Java code in our LOOP/PVS setting, it seems
wise to at least start with the more pragmatic approaches mentioned at the end
of Sect. 2.1, and just verify that invariants are never broken outside transactions,
i.e. the approach that is also taken in [1].

7 Remaining Issue

We believe that our model faithfully formalizes Sun’s official specification of the
transaction mechanism, with the possible exception of the issue discussed below.

One unclarity in Sun’s specification of the Java Card API that we came
across concerns the ‘non-atomic’ methods arrayCopyNonAtomic and arrayFill-
NonAtomic in the API class javacard.framework.Util. Indeed, as is often the
case, the main value of our formalization may well be to reveal such potential
ambiguities in the informal specification.

The API specification of these methods says that

“This method does not use the transaction facility during the copy op-
eration even if a transaction is in progress. . . . ”
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The precise meaning of this is not clear. For example, suppose we have two
persistent arrays p and q and that during the execution of

p [0] = 0; q[0] = 2;
beginTransaction();

p[0]++;
arrayCopyNonAtomic(q,0,p,0,1);

endTransaction();

a card tear occurs immediately after the arrayCopyNonAtomic. In that case, it is
not clear if p[0] will be restored to 0, as our semantics would predict, or to 1. In
the former case all side-effects to p[0] during the transaction are undone, in the
latter case the side-effect of arrayCopyNonAtomic is not undone. Experiments
on actual smarts5 confirms that the former happens. However, the quote above
could be interpreted to mean that the latter should happen.

We do not have the space to discuss all the implications of this issue here,
and, moreover, we are still investigating it, but we will make a report available
about the outcome, so check our webpages for additional information.

8 Conclusion

We have shown how Java Card features such as card tears, transactions, and
transient as opposed to persistent memory can be faithfully modeled inside Java,
making it possible to use existing programming logics for Java to reason about
these features. An advantage of the approach is that it is to a large extent
independent of the Java semantics being used. An added benefit of such a model
inside Java is that it is understandable to a larger audience – the desugarings
should provide anyone with a good knowledge of Java with a clear understanding
of the semantics of card tears and transactions, and with useful basis about
reasoning about the features – and that we can use standard JML to specify
properties of these features.

A disadvantage of the approach is that it is somewhat ad-hoc. A definition
of a semantics for Java Card from scratch, be it denotational or operational
semantics, or an axiomatic semantics as Hoare logic or weakest precondition
calculus, would provide less ad-hoc and more rigorous semantics. Furthermore,
it is somewhat unsatisfactory that we have to assume that during our event
handling code there will not be another card tear.

It is important to realize that Java Card programs are extremely simple pro-
grams, without much complicated class hierarchies or OO structure to speak of.
In many applications the only object, apart from some byte arrays used as fields,
is a single object of class javacard.framework.applet. For such programs it is
trivial to decide at compile time what the relevant persistent and transient data
at runtime will be.

To our knowledge, the only other work on Java Card that does not ignore
transactions and card tears is [1]. The approach presented there can be used to

5 IBM JCOP 2.1.1 cards, 21id and 31bio to be precise.
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prove that certain invariants are never broken, but cannot establish postcondi-
tions in the event of a card tear, as discussed in Sect. 2.1, or distinguish between
the atomic and non-atomic API methods for copying arrays discussed in Ex. 2.

Unfortunately, the Java model is quite unreadable if it takes all explicit card
tears into account. The implementation of the existing TransactionExceptions
also really decreases readability, which makes this method less practical. On the
other hand, knowing these syntactical problems it should not be too difficult to
implement some of these solutions into the semantics of the proof system. For
our own LOOP tool we are sure that this can be done.
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Abstract. To be able to build systems by composing a variety of com-
ponents dynamically, adding and removing as required, is desirable. Un-
fortunately systems with evolving architectures are prone to behaving in
a surprising manner. In this paper we show how it is possible to generate
a snapshot of the structure of a running application, and how this can be
combined with behavioural specifications for components to check com-
patability and adherence to system properties. By modelling both the
structure and the behaviour, before altering an existing system, we show
how dynamic compositional systems may be put together in a predictable
manner.

1 Introduction

There is a growing need for software systems to be extensible, as changes in
requirements are discovered and fulfilled over time. In many cases it is inconve-
nient or costly to stop and restart an application in order to perform a change
in configuration. By using a plugin architecture we can construct systems from
combinations of components, with the architecture changing dynamically over
time.

Szyperski describes components as units of composition that may be subject
to composition by third parties [4]. Plugin architectures fit this description well.
Plugins are components that can optionally be added to an existing system at
runtime to extend its functionality. Each plugin may expose certain interfaces
that it provides and requires [10]. By matching provisions to requirements, we can
identify components that can be connected. By dynamically creating bindings
between these components, calls can be made from a component requiring a
service to another component that provides that service.

In an environment where systems can change through incremental addition
and removal of components, it is desirable to be able to check for the preserva-
tion of properties as systems evolve. A group of components may be interacting
correctly, but introducing a new component to the system may cause problems.
Before adding new components, we would like to be able to ensure that unde-
sirable behaviour will not occur, in order that configurations that might violate
certain properties are not realised. Examples of such properties might be free-
dom from deadlock, liveness, or ensuring that an error state is never reached.

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 129–143, 2004.
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Our approach is to build and check a model that contains both structural and
behavioural information.

The structural information consists of interfaces and bindings, which define
sets of shared actions through which components can interact. However, they
do not provide any information about the order in which these actions will
be performed. This means that although we may be able to reason about the
structure of systems of components based on this information, we are unable to
reason in any way about their behaviour.

The behavioural information comes from the developer of a component, who
can supply a specification of the way that component behaves (it is impossible to
ascertain the programmer’s intentions automatically). However, as components
from different vendors can be combined in any number of different possible con-
figurations, there is no way of writing a definitive model of how all different
combinations will behave. To produce a model of the behaviour of the complete
system requires composing the behavioural models for all of the components in a
particular configuration in parallel, and ensuring that components are correctly
synchronised where their interfaces are bound together. In this paper we show
how such a model can be constructed, and hence the system’s behaviour can be
analysed.

As systems of plugin components can have components dynamically added
(and removed) over time, and because one of the ideas of plugin components is
to minimise the effort involved in configuring and administering a system, it is
desirable that system models be generated and tested automatically. We show
how our structural and behavioural specification techniques can be used for this,
and how our tools can generate and analyse models automatically.

In the remainder of this paper we describe techniques for modelling the struc-
ture and behaviour of systems, and go on to discuss how the features of the plugin
system map to the concepts used in these modelling techniques. We describe how
models can be automatically generated from implemented components, present
an example, and finally discuss related and future work.

2 Background

2.1 Plugin Framework

We have implemented a framework for plugin components, which we call Mag-
icBeans, that can examine the compiled code of a Java component and auto-
matically perform the matching and binding of interfaces at runtime [5]. The
MagicBeans framework is more powerful than the plugin systems used to extend
applications like web browsers, as we can handle plugins to plugins, creating
arbitrarily complex configurations of components. An advantage over the plu-
gin system used by Eclipse [13], is that we do not require that the system be
restarted in order to pick up new plugins.

MagicBeans is implemented in Java, and allows a system to be composed
from a set of components, each of which comprises a set of Java classes and
other resources (such as graphics files) stored in a Jar archive. The MagicBeans
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platform is a component in its own right, but the system starts with it already
in place as a bootstrap. The platform provides some static methods that can be
called from any other component.

The platform maintains lists of all of the components in the system and the
bindings between them. When a new plugin is added to the system, the plat-
form searches through the classes and interfaces present in the new component’s
Jar file to determine how it can be connected to the components currently in
the system. For each component, the plugin manager iterates through all of the
classes contained inside the Jar file, checking for interfaces implemented (pro-
visions) and methods accepting plugins of particular types (requirements), and
compares these for compatability with the provisions and requirements of the
other components currently in the system. To be compatible, a provision must
be a subtype of a requirement. In each case that a match is found, the class
implementing the provision is instantiated and a reference to the object created
is passed to the other component, creating a binding.

2.2 Modelling Structure and Behaviour

Software Architecture describes the gross organisation of a system in terms of
its components and their interactions. The Darwin ADL [10] can be used for
specifying the structure of component based and distributed systems. Darwin
describes a system in terms of components that manage the implementation of
services. Components provide services to and require services from other com-
ponents through ports. The structure of composite components and systems is
specified through bindings between the services required and provided by dif-
ferent component instances. Darwin has both a textual and a complementary
graphical form, with appropriate tool support.

Darwin structural descriptions can be used as a framework for behavioural
analysis. Darwin has been designed to be sufficiently abstract as to support
multiple views, two of which are the behavioural view (for behavioural analy-
sis) and the service view (for construction). Each view is an elaboration of the
basic structural view: the skeleton upon which we hang the flesh of behavioural
specification or service implementation.

Focussing on the behavioural view, we can use simple process algebra - Finite
State Processes (FSP) [9] - to specify behaviour. A complete system specification
can be written by using the same action names in the behavioural specification
as in the Darwin service descriptions. These specifications are translated into
Labelled Transition Systems (LTS) for analysis purposes. Analysis is supported
by the Labelled Transition System Analyser (LTSA) tool.

3 Generating a Model of the System

In our system of plugin components, the runtime plugin framework (MagicBeans)
forms a middleware platform. This is responsible for initialising all of the com-
ponents, matching the required and provided interfaces of the new component
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against those of the other components already in the system, and creating bind-
ings between them, in order to create an application. Any addition or removal of
components has to be done via the plugin framework. The framework therefore
has information about all of the components currently in the system, and how
they are connected.

The framework can use this information to produce a textual specification in
Darwin that gives a snapshot of the current system configuration. This can be
done at runtime, based solely on the information present in the compiled code
of the components and the current state of the system. There is no need for the
developer to provide Darwin descriptions of each component, as these can be
generated automatically from the bytecode.

3.1 Matching Plugin Concepts with Darwin Concepts

Our plugin components comprise collections of (Java) classes and interfaces bun-
dled together in a Jar file (which may also contain other resources such as
graphics or data files). Below is the Java code for a basic filter plugin, and
the corresponding Darwin description that is generated from it. The Java code
follows an outline that would be the same for any plugin. The code for the class
and interface would be compiled and packed into a Jar file, forming the plugin
component.

For each Jar file we will have a corresponding component construct in Darwin.
The Jar file may contain a number of class files representing interfaces. These are
collections of methods that define types. We equate them with Darwin interface
definitions which perform the same function.

Java :

public interface Filter { public void data( String x ); }

public class FilterImpl implements Filter {

Filter next;

// constructor
public FilterImpl() {

PluginManager.register( this );
}

// implementation of Filter interface
public void data( String x ) {

if ( next != null ) { next.data( x ); }
}

// method to be called by plugin platform
public void pluginAdded( Filter f ) { next = f; }

}
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Darwin :

interface Filter { data; }

component FilterImpl {

require next:Filter;
provide Filter;

}

Some of the classes in the Jar file may be declared as implementing certain
public interfaces. These are classes that provide services that can be used by
other components. The inclusion of such a class in a plugin is equivalent to
declaring a Darwin component to have a provided port with the type named by
the interface. Such a class may be instantiated several times, by a third party,
to produce objects that provide this service. We do not have explicit names for
these objects, so in Darwin we just declare the type of the provided port.

Components can use services provided by other components. When a new
plugin is added to a system, the component that accepts it needs to be able to call
methods provided by that plugin in order to use it. In Darwin this corresponds
to a required port. In Java we need a reference to an object of a certain type in
order to be able to call its methods. The mechanism by which we acquire such
a reference in the plugin system is as follows.

An object registers as an observer with the plugin platform, by calling a
static method register() in the PluginManager class. To be notified of new
plugins, the object can define a number of pluginAdded() methods with dif-
ferent parameter types. When a new plugin is connected the platform picks the
relevant method and calls it, passing a reference to the object from the new
component that provides the service. In the body of the pluginAdded() method
this reference is assigned to a field of the appropriate type.

We generate requires ports in the Darwin specification for any field in the
Java which is assigned to within the body of one of the pluginAdded() methods.
We name the port with the name of the field as declared in the class, next in the
above example. Naming required ports is necessary as it is possible for a compo-
nent to have more than one required port of the same type, as a component may
accept multiple plugins of the same type. These could be assigned to different
fields in the class, or added to an array. For example, a forking filter would for-
ward data to two different downstream components, and so would accept, and
keep references to, two plugins with the same interface.

It should be noted that it is much more difficult to extract information about
the required services from a component than the provided service. We have to
look for names of fields, and examine the body of the pluginAdded() method by
processing the Java bytecode, rather than simply finding the type of the class.
It is a trait of object-oriented programming that objects typically declare the
methods that they provide, but not those that they use from other objects.

When constructing a system, we work at the level of components. A new Jar
file is loaded to add a component. Any provided ports in the new component
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that match required ports in other components, or vice versa, are identified. The
class that provides the service is instantiated by the plugin platform and any
observers in the component requiring the service are notified, passing a reference
to this new object. This process creates a binding between the two components.
In Darwin terms, we model the complete system as a component, and add to it
an instance of the providing component, which is given an arbitrary, but unique,
name. We also add a binding between the relevant ports and components. The
following would be generated for a chain of two filters:

component System {

inst f:FilterImpl;
f2:FilterImpl;

bind f.next -- f2.Filter;
}

3.2 Specifying Behaviour

A simple example showing how these concepts might be extended to include
behaviour (a specification of the order in which actions are performed) is a
client connected to an email server. The Client component contains an interface
Email, declaring the methods login(), fetchMail() and sendMail(), and when
notified of an object of this type will call these methods. The Server component
contains a class that implements the Email interface. The plugin framework
can create a description of the interface and the two components in Darwin.
Provided and required ports are declared with the appropriate types. In the
example, the system as a whole comprises one instance each of the Client and
Server components, with the two ports connected by a binding.

interface Email { login; fetchMail; sendMail; }

component Server {

provide Email;
}

component Client {

require serv:Email;
}

component System {

inst s:Server;
c:Client;

bind c.serv -- s.Email;
}
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Client Server

Framework

Fig. 1. Client provides FSPDefinition to the plugin framework.

The information in the Darwin description is purely structural. In order to
add some information about the behaviour of each of the components, we need
a way of including an abstract description of the behaviour with the component.
We do not want to provide the behavioural model separately from the component
as one of the ideas underpinning plugin technologies is that plugins should be
deployed as single entities that include everything they need in order to be used.

The approach we have taken is to allow each component to have a another
provides port where it can provide a textual description of its behaviour (in
FSP) as a string. A binding can be made between this port and a requires port
on the plugin framework (which is itself a component that can be connected in
the same way that any other in the system can), see Figure 1.

When the framework is constructing the Darwin to describe the current state
of the system, it will request the FSP from any components that provide it, and
include this in the model. For example, we can include the following (Java)
class in the Client component, allowing it to provide an FSP description of its
behaviour:

public class ClientBehaviour implements FSPDefinition {

public String getFSP() {

return ‘‘Client = ( serv.login -> serv.fetchMail
-> serv.sendMail -> Client ).’’;

}
}

When the framework generates the system description, it requests the FSP
description from the Client and includes it in the Darwin inside the definition
of the Client component (inside a special type of comment /% ... %/ ) in the
Darwin specification, as below. The behavioural description shows an ordering
of actions called through the serv port (the client logs in, then fetches email,
then sends email), which cannot be derived from the interface descriptions alone.
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In the case that a component does not provide an FSP description of its
behaviour, as with the Server component in this example, we generate a process
that allows any of the actions from the component’s provided interfaces to be
performed in any order.

interface Email { login; fetchMail; sendMail; }
interface FSPDefinition { getFSP; }

component Client {

require serv:Email;
provide FSPDefinition;

/% Client = ( serv.login -> serv.fetchMail
-> serv.sendMail -> Client ). %/

}

component Server {

provide Email;

/% Server = ( { login, fetchMail, sendMail } -> Server ). %/
}

component Framework {

require fsp:FSPDefinition;
}

component System {

inst s:Server;
c:Client;

bind c.serv -- s.Email;
f.fsp -- c.FSPDefinition;

}

Here we have included the Framework component in the model, and show
how the Client provides the behavioural definition through a port which is bound
to the corresponding port in the Framework. We have omitted any description
of the behaviour of the Framework, as it is part of the infrastructure rather than
a user component. We assume that the Framework is transparent and will not
introduce any behavioural problems.

3.3 Changes of Configuration

As the configuration of a piece of software constructed from plugin components
changes over time, the way that particular components behave may also change.
Components may behave differently depending on whether they have other com-
ponents connected to their required ports.
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When a plugin is connected to the system, other components need to change
their behaviour to take advantage of the new services provided. Existing compo-
nents need to be notified that a new component has been connected. To achieve
this, components register with the plugin framework as observers, to be notified
when a change in configuration occurs that is relevant to them.

The framework calls the observer back through the pluginAdded() method.
In the FSP we can use the corresponding action pluginAdded action as a signal
to change from one mode of behaviour to another. If a component implemented
a basic matrix analysis algorithm, but allowed a plugin to be connected that
provided a more efficient implementation of this algorithm, the component might
perform the calculation itself while its requires port is unbound. If and when it is
notified that a plugin has been added (the port has been bound), the component
will change its behaviour so that from then on the call is delegated to the plugin.
This could be described in FSP as follows:

component MatrixSolver {

require fast:Algorithm;

/%
MatrixSolver = ( input -> calculate -> output -> MatrixSolver

| pluginAdded -> FastSolve ),
FastSolve = ( input -> fast.solve -> output -> FastSolve ).
%/

}

3.4 Specifying Properties

In FSP, safety and liveness properties can be specified for a model, and we
can check these using a model checker. We also have the facility for expressing
properties in a linear temporal logic. Currently we manually specify properties
textually in the tool, but we anticipate that properties could be provided in
components in the same way that behavioural specifications are. Properties could
then either be provided as plugins in their own right, to plug in to the platform,
or be integrated into other components. The platform could then incorporate
them into the model.

3.5 Composing the System

The Darwin compiler constructs a parallel composition of the behaviours of
each of the separate components, employing an appropriate relabelling such that
components that are bound together are synchronised. For every pair of ports
that are bound, providesport.action is relabelled to requiresport.action.
Any action included in a behavioural description that is not part of one of the
interfaces of one the ports of a component is treated as an internal action. The
resulting FSP model can be compiled to a labelled transition system and checked
for properties such as deadlock [9].
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When a new component is identified for addition to the system, we can
determine how we intend to bind the new component, and then build a model of
how the system would behave if the new component were connected in that way.
If we do this before the component is connected, we can use the model to check
whether adding the component will cause the system to violate any properties
that we wish to hold. This information can be used to decide whether or not a
new component should be bound to the system in a certain way, or added at all.

4 Predicting Behaviour

We consider an example based loosely on the Compressing Proxy Problem [7].
A set of components are chained together to form a pipeline through which
data can flow. We will allow further components to be plugged in to the end
of the pipeline increasing the length of the chain over time. The basic premise
of the problem is that in order to increase the efficiency of data transfer along
the pipeline, a compression module is introduced at either end, compressing the
datastream at the source and decompressing it again at the sink.

In the original Compressing Proxy Problem, the pipeline comprises a set of
filters which all run in a single UNIX process. Integrating a compression module
that uses gzip with this system requires some thought, as gzip runs in a separate
process. An adapter is therefore used to coordinate the components. . In this
example we consider only the source end of this situation, although similar issues
are involved at the sink.

Each component is implemented as a set of Java classes and interfaces pack-
aged into a Jar file. We start the plugin framework, with a Source as the com-
ponent that forms the core of the system. The Source generates data and sends
it down stream, see Figure 2. Each component provides an FSP definition of its
behaviour. The Source component includes the following class:

public class SourceBehaviour implements FSPDefinition {

public String getFSP() {

return ‘‘Source = ( next.data -> Source ).’’;
}

}

Each of the other component Jar files contains a similar class. We add a
plain Filter to the pipeline. The Filter simply reads data from upstream and
passes it on downstream. FilterImpl implements the Filter interface, and has
a field of type Filter for a reference to the next component in the pipeline.
FilterImpl’s data() method just calls the next component’s data() method.
This is specified in FSP as:

FilterImpl = ( data -> next.data -> FilterImpl ).

The gzip compressor cannot be placed directly into the pipeline, and so needs
an adapter component to pass data to it. The GZip component then plugs in to
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Source Filter Adapter Filter

GZip

Fig. 2. Arrangement of components in pipeline with gzip.

the adapter. When there is no gzip processor present, the adapter should behave
like a plain filter. When in adapting mode, the adapter sends packets out to the
processor and reads the processor’s output back in before sending the processed
packets on downstream. The pluginAdded action triggers the transition from
plain filter to adapting behaviour.

Adapter = FilterImpl,
FilterImpl = ( data -> next.data -> FilterImpl

| pluginAdded -> Adapt
),

Adapt = ( data -> out.packet -> ToProc ),
ToProc = ( out.packet -> ToProc | out.end -> FromProc ),
FromProc = ( packet -> FromProc | end -> next.data -> Adapt ).

The complete Darwin and FSP specifications can be found at http://www.
doc.ic.ac.uk/˜rbc/writings/fase04 appendix.pdf. Using the Darwin com-
piler to translate this specification to FSP, then compiling that to an LTS model,
enables the use of a model checker to perform a check for deadlock.

If we generate the model for the system without the gzip processor, then we
can check the behaviour of the basic pipeline. In order to ensure that the adapter
does not enter its adapting mode, it needs to be prohibited from performing the
pluginAdded action. This can be done by composing the system in parallel
with a process modelling the framework that synchronises on a.pluginAdded
but never performs this action. Such a process can be defined as STOP with an
alphabet extension to include the a.pluginAdded action.

Framework = STOP + {a.pluginAdded}.

||NoGZip = (System || Framework).

If we build the NoGZip process and check it, the model checker reports
that it is deadlock free. If we add the GZip component, remove the constraint
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Fig. 3. Screenshot from LTSA showing trace to deadlock.

so that pluginAdded can occur, rebuild the model and check again, we find
that the following trace leads to a deadlock: f.data, a.pluginAdded, a.data,
f.data, g.packet, g.full (as shown in Figure 3). This indicates that adding
the gzip processor can lead to a deadlock if GZip’s output buffer becomes full
before the adapter is ready to accept output from the gzip processor.

To have the system work correctly without deadlocking requires replacing the
adapter component with one that will accept output from the processor before
having sent it the end signal to say that the input has finished, or using a GZip
component that never tries to write any output before it receives the end of
input signal, i.e. it has infinite capacity buffers.

5 Tool Support

The Labelled Transition System Analyser is a tool that compiles FSP into LTS
models and checks properties on those models [9]. The LTSA itself now uses our
plugin architecture, and we have developed a plugin for it to allow Darwin to
be written and translated to FSP. We have also added an extension where the
LTSA hosts a server that listens for Darwin specifications which are sent to it
over the network.

Using these extensions, we can run a plugin application on one machine,
and whenever a change is about to be made to the configuration, generate a
Darwin/FSP specification and send it over the network to an instance of LTSA
running on another machine. The LTSA then builds and checks the model. Pro-
ducing a model of what the system would be like when a component is added be-
fore actually commiting and making the bindings, we can use the model checker
to decide whether or not adding that component and making the proposed bind-
ings is a safe thing to do.

We could use this process to check a set of possible bindings to see if any are
unacceptable because of violation of properties. Running the checks on a remote
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machine means that we do not have to include all of the code for the model
checker in the plugin platform.

Building and checking an LTS model can be expensive in terms of computa-
tion. Depending on the frequency with which changes in the system configuration
are made, and how sure the administrators need to be that the resulting system
will not deadlock, it may or may not be worth doing. Checking new additions
to a large business server, where changes are large, infrequent, but business crit-
ical could definitely be justified. Checking the correctness of configurations of
a desktop music player application when trying out different GUI components
might well not be.

6 Related Work

There is a general movement towards the idea that the specification of a compo-
nent should include information about its behaviour as well as its interface [2].
Several ADLs have been extended or complemented with languages for describ-
ing behaviour, for example C2SADEL [11] which uses logic to specify behaviour,
or Wright [6] and PADL [3] which use process algebra.

The idea of incorporating the specification with the component is supported
by Microsoft’s AsmL [1]. This allows for the runtime verification of the behaviour
of the implementation against the specification.

Another angle on including within a component a way to check that it meets
some property is the use of proof-carrying code [12]. Components can be provided
along with a proof that they fulfil some property. The system on which they are
intended to run can verify these proofs using a proof checker.

The Bandera project [14] aims to extract process models directly from Java
code, so that models can be built and checked directly, without human interven-
tion.

In the work that we have presented here, we combine the behavioural de-
scriptions for all components and check for a property. It might be interesting to
see whether it is possible to use techniques designed for finding the assumptions
necessary for assume-guarantee reasoning [8] to find an assumption that must
hold for a component being added to the system, and check that component
against the assumption separately from the system.

7 Conclusions and Future Work

We have presented a technique for automatically generating a description of the
structure and behaviour of an application that has been composed dynamically
from plugin components. Using tools we can compile this description to an LTS
model, which we can test, using a model checker, to determine whether various
desirable system properties hold.

The structural description can be generated automatically by the plugin mid-
dleware, based on the interfaces exported by each of the plugins and the bindings
made between them. Behavioural information for each plugin is given in the form



www.manaraa.com

142 Robert Chatley et al.

of a description in the FSP process calculus which is included in the component.
By combining the behavioural information about each component with the de-
scription of the system structure, a model of the behaviour of the system as a
whole can be generated.

The model can be compiled to the form of an LTS which can be analysed
automatically, using a model checker, for adherence to desired system properties.
Performing such analysis before a new plugin as added to the system allows us
to predict whether the addition of this new component would cause the system
to behave in an undesirable way.

Future work in this area could include trying to extract more behavioural
information directly from the code of the components, rather than requiring the
developer to write the specification by hand. Some techniques for doing this are
being developed as part of the Bandera project [14] which could possibly be
used. This could allow behavioural specifications to be generated automatically,
rather than requiring the developer to write them in a language that may well
be unfamiliar. However, if the model that is generated is too detailed then we
may suffer from the state explosion problem when model-checking. Another ap-
proach would be to produce tools to assist developers in writing the behavioural
specifications.

With our current technology, plugin systems are constructed by matching
port types, and the techniques discussed here can be used to check the resulting
system for adherence to a property. The use of behavioural properties could be
extended to further direct and constrain the construction and reconfiguration of
systems beyond what is currently possible.
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Abstract. Large distributed systems, including real-time embedded sys-
tems, are increasingly being built using sophisticated middleware frame-
works. Communication in such systems is often realized using in terms of
asynchronous events whose propagation is implemented by an underly-
ing publish/subscribe service that hooks components into a generic event
communication channel. Event correlation – a mechanism for monitoring
and filtering events – has been introduced in some of these systems as an
effective technique for reducing network traffic and computation time.
Unfortunately, even though event correlation is used heavily in frame-
works such as ACE/TAO’s real-time event-channel and in mission critical
contexts such as Boeing’s Bold Stroke avionics middleware, the industry
standard CORBA Component Model (CCM) does not include a specifi-
cation of event correlation. While previous proposals for event correlation
usually offer sophisticated facilities to detect combinations in the stream
of incoming events, they have not been constructed to fit within the
CCM type system, and they offer relatively little support for transform-
ing and rearranging filtered events into meaningful output events. In this
paper, we present the design rationale, syntax, and semantics for a new
and highly flexible model for event correlation that is designed for inte-
gration into the CCM type system. Our model has been integrated and
tested in the Cadena development and analysis framework, which has
been designed to support development of mission-control applications in
the Boeing Bold Stroke framework.

1 Introduction

As software systems become more distributed, developers are increasingly turn-
ing to component-based development frameworks such as Java Enterprise Beans
(EJB) and the CORBA Component Model (CCM) to manage the complexities
associated with building and deploying distributed systems. A major advan-
tage of such component based systems working on sophisticated middleware in
general is the clear separation of concerns, which distinctly isolates the stages
of the development process as well as it divides business logic from infrastruc-
ture, allowing to synthesize substantial parts of the implementation directly from
the specification. Further, CCM as an established industry standard based on
CORBA, introduces system independence and a high level of interoperablity
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into the development process. As a result, component-based development is be-
ing explored in real-time safety/mission-critical domains as a mechanism for
incorporating non-functional aspects such as real-time, quality-of-service, and
distribution, permitting the developer to focus on application-specific parts.

Communication between components in such systems is often phrased in
terms of asynchronous events whose propagation is implemented by an underly-
ing publish/subscribe service that hooks components into a generic event com-
munication channel. In these event services, event correlation – a mechanism for
monitoring and filtering events – often plays a crucial role in reducing network
traffic and computation time.

To illustrate, consider the common case where one component C receives
events a and b from components A and B, respectively, and generates a new
output event c which is synthesized in some way from a and b – specifically, C
requires both a and b before it can generate its own output event. If component
A issues events at a higher frequency than component B (as is often the case in
real-time periodic systems), many a events will be discarded by C as it awaits for
an accompanying b. Obviously a communication channel which is able to filter
out such additional events saves logic and computation time in the receiving
component and reduces network traffic in the system. Specifically, we would like
the event communication layer itself to monitor the event flow and forward an
a and b together to C only when both events have occurred. Depending on the
complexity of communication this improvement is often substantial.

Unfortunately, even though event correlation is used heavily in frameworks
such as ACE/TAO’s real-time event-channel and in mission critical contexts
such as Boeing’s Bold Stroke avionics middleware, the CCM specification does
not include a specification of event correlation. While previous proposals for
event correlation usually offer sophisticated facilities to detect combinations in
the stream of incoming events, they have not been constructed to fit within the
CCM type system, and they offer relatively little support for transforming and
rearranging filtered events into meaningful output events.

In this paper, we present a new and highly flexible model for event correla-
tion that is simple in syntax and rich enough in features to specify complicated
correlations. Increased flexibility is achieved by splitting an event correlator into
two phases: first, a filter phase monitors the event flow for the desired event
combination, then a second closely-interacting transformation phase disassem-
bles input events and reassembles payloads from the input events into output
events in a programmable manner. The splitting of correlation into these two
phases (specifically, the introduction of the programmable transformation facil-
ity) allows our correlation framework to be tightly integrated with the event
type system of CCM.

The contributions of the paper are as follows.

– We present a novel event correlation framework that decomposes event cor-
relators into event filter and event transformer stages.

– We define a formal semantics for this correlation framework in terms of a
language over event sequences.
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– We show how the notion of event transformer allows for the first time a
correlation framework to be incorporated into CCM and integrated with the
CCM event type system.

– We describe how our correlation framework is implemented in the Cadena
environment for development of high-assurance distributed systems, and how
correlation specifications given at the modeling level are translated to im-
plementations in the underlying middleware layers.

– We illustrate how our framework can be used to correlation problems that
are representative of those in avionics applications but are more difficult to
solve using previous frameworks.

These results remove barriers that previously prevented applications that relied
heavily on correlation (such as those built in Boeing’s Bold Stroke program)
from being transitioned to a CCM framework where standardization and a richer
deployment framework provide a variety of benefits.

The rest of this paper is organized as follows. Section 2 presents the syntax
and semantics of event filter expressions Section 3 describes the event transform-
ers. Section 4 illustrates how our correlation framework can be used to implement
dynamic changes to correlations. Section 6 discusses related work, and Section 7
concludes.

2 Syntax and Semantics of Filter Expressions

2.1 The Filter Syntax

Previous approaches build on atomic expressions which access the payload of
an event and associate truth values according to whether the event with its
attributes satisfies the atomic expression. While our model in general is inde-
pendent from the actual form of the underlying atomic expressions, we chose to
only consider the arrival of an event, since this strategy follows the concept of
the CCM architecture in the sense that we connect typed source ports to typed
sink ports from known entities, allowing the communication channel to have
knowledge about the connections but leaving any assessment of the payload val-
ues other than rearrangement to the components of the system. The time of the
issuing of the event (e. g. represented in the form of a timestamp attached to the
event) as well as its source and its type are considered intrinsic properties of the
event and hence visible to the correlator. Note that knowledge of the generation
time of an event is implicitly assumed by all above mentioned previous works
on event correlation [6, 7, 12, 10], otherwise the use of a sequential operator (see
below) is infeasible. Accordingly, we can assign a single identifier to every source
port connected to a correlator.

In the reminder of this section, we will assume that there are source com-
ponents A, B, C, . . . connected to the Event Channel (i. e. the communication
channel provided by the middleware), and that these components issue the events
a, b, c, . . . with the types τa, τb, τc, . . . respectively. As mentioned above, the
payload of an event is not accessible to the filter, thus we can identify a finite set
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filter ::= sequence ( || filter )∗

sequence ::= collection ( ; sequence )∗

collection ::= accumulation ( | collection )∗

accumulation ::= atom ( + accumulation )∗

atom ::= (label:)? event
| (label:)? ( sequence )

(a) Filter Expression Grammar

Filter

Transformer

b
a
c
c

d d d

a

correlated events

incoming events

(b) Filter/Transformer

Fig. 1. Filter Grammar and Role.

Σ = {a, b, c, . . .} of possible events occurring in an infinite sequence as input of
the correlator by considering two events equal iff they come from the same source
port. Similar to the other mentioned approaches, we use an expression which we
call the filter expression to denote the subsequences which are of interest for the
receiver of the correlated event.

The syntax of the filter expressions is closely related to that of previous
approaches such as e. g. the ECL expressions in [10], the Event Composition
Operators in [7] or the Policy language in [6]. It is further based on our assessment
of the Boeing’s Bold Stroke and SAE AADL (Avionics Architecture Description
Language1) frameworks. In this approach we present three basic combinators and
a parallel combinator. Informally the three combinators are (1) the accumulation
of events, i. e. both of two events a and b have to occur, regardless of the order
(written a+b), (2) the collection of events, i. e. at least one of two events a and b
has to occur (written a|b), and (3) the sequence of events, i. e. of two events a and
b both have to arrive in the given order (written a;b). An abbreviated grammar
of the filter expressions is given in Fig. 1(a). In this grammar, “(. . . )∗” stands
for zero or more and “(. . . )?” for zero or one instance of the item given inside the
parenthesis. Note that all combinators are defined with arity two. While this does
not impact the expressiveness of the combinators since they are associative [5], it
greatly simplifies the formal definition of dynamic semantics given in section 4.
Further, note that our approach enabled us to reduce the number of different
combinators as compared to previous models without loosing flexibility. In fact,
we believe that in our approach the expressions are more intuitive instead.

2.2 Semantics of the Three Basic Combinators

We now define the semantics of filter expressions in a way similar to regular
expressions. This approach provides a firm formal background while leaving the
computational model for implementing a filter open to the choice of the pro-
grammer. Essential is the concept of a match, which we first define for a basic
atomic expression composed of a single event:
1 See http://www.sae.org/technicalcommittees/aasd.htm.
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Definition 1. A sequence s = e1 . . . en of events e1, . . . , en ∈ Σ matches a
singleton filter expression a, iff an event a is in s, i. e. there is an i with ei = a.

Next, we define the basic combinators +, | and ;. The parallel operator || is
discussed later.

Definition 2. A sequence s of events matches a filter expression x1 ⊕ x2 iff

– ⊕ is + and s matches x1 and s matches x2.
– ⊕ is | and s matches x1 or s matches x2.
– ⊕ is ; and the sequence s can be split into two subsequences s1 and s2 such

that s = s1 · s2 and s1 matches x1 and s2 matches x2.

To illustrate, consider the expression a+b and a;b. While the former is matched
by the sequence bbca, the latter is not. Other matched expressions are e. g. b|d
or b;a. Note that “+” and “|” are commutative, while “;” is not [5]. We will
call the set M(x ) = {s ∈ Σ∗ | s matches x} the set of matches of the expression
x . Clearly, there are infinite sequences in the set of matches of an expression
x . Nevertheless for the filter we are only interested in a notification whenever a
match first is complete.

Definition 3. A shortest match of an expression x is a sequence s of events
such that s matches x but no proper prefix of s matches x .

In analogy to regular languages we call the set of shortest matches of an expres-
sion x the language L(x ) of x .

For example, aab, aaab and aaaaaab are shortest matches for the expression
b with a, b ∈ Σ, aaba is a match, but not a shortest match. Shortest matches for
the expression a+b|a+c are e. g. ba, ac, bbcbca, aac.

Sequences we can define with these three basic combinators are a subset of
regular languages ([5]), hence it is obvious that we can construct an acceptor.

2.3 The Trigger

Definition 2 implies that for the combinators + and | both subexpressions have
to be checked on the same sequence s, which means that their acceptors are
both executed in parallel. Consider the sequence abbabaa . . . and the expression
a;b;a. Then there are two successive shortest matches in the sequence

abba︸︷︷︸ baa . . . and abb aba︸︷︷︸ a . . .

which are overlapping. In the event communication service though, we are inter-
ested in separate, non-overlapping occurrences of the correlation. We therefore
define the notion of a trigger on the sequence s.

Definition 4. A shortest match of an expression x on a sequence s of events is
a trigger, iff it does not overlap with a previous trigger on s.

Note that at the beginning of a sequence there can be no previous trigger, hence
the definition is well founded. The second match in the above example therefore
it is not a trigger. Intuitively, a state based acceptor resets at the point abba ↓
baa . . .. We say a filter triggers whenever it completes a trigger.
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2.4 The Parallel Combinator

There can be situations, in which all overlapping triggers are of interest to the
receiver of a correlated event. Moreover though, as described in section 4, we
want to be able to influence the behavior of a correlator without affecting ongoing
computations of the filter. We hence introduce a parallel combinator ||, which
is exactly similar to the collection combinator | in its definition of a match and
shortest match, but it allows overlapping matches:

Definition 5. Let s be a sequence, T1 be the set of triggers of expression x1 on
s, and T2 be the set of triggers of expression x2 on s. Then the set of triggers T
for the expression x1||x2 is the union T1 ∪ T2 of the sets T1 and T2.

Intuitively, the expressions x1 and x2 run independently from each other. Clearly
it is not necessary to allow the use of the parallel combinator anywhere but in
top level of the filter expression (this motivates the structure of the grammar in
Fig. 1(a)).

2.5 The Result of the Filter Evaluation

Consider the expression a|b which triggers whenever a or b appear in the input
sequence. In case of triggering we want to know which one of the events, a or b
actually arrived, since the result of the correlation delivered by the transformer
(see section 3) might depend on it. Therefore we introduce the notion of an active
subexpression.

Definition 6. Let s be a sequence of events, and the subsequence s′ of s be
a trigger of expression x on s. A subexpression x ′ of x is called active iff s′

matches x ′.

E. g. b+c is an active subexpression of the expression a+c|b+c on the trigger ccb,
while the subexpression a+c is not. For the trigger ac though, a+c is active, while
b+c is not. Finally, for the trigger abc every subexpression of a+c|b+cis active.

To make the result of a subexpression accessible to the transformer, it has
to be marked with a label.

Definition 7. A label l ′ attached to a subexpression x ′ of an expression x is
active iff x ′ is active.

To illustrate we label two of the subexpressions of the previous example as
l1:(a+c)|b+l2:c. On the trigger ca the label l1 is active, on the trigger bc not.
Note that l2 is active on every trigger of the expression.

Upon completion of every trigger the filter propagates the set of active labels
as result to the transformer. Note that the filter does not terminate after the first
trigger, but it continues to trigger throughout the sequence of incoming events.

2.6 The Concrete Syntax of the Correlation

We define the correlators offered by the middleware communication channel in
a separate input file called correlation library2. For simplicity we designed the
2 See section 5.
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form of the correlation definition closely similar to usual method or procedure
definitions in imperative languages:

output-type correlation name (typed-identifier1, typed-identifier2, . . . )
filter-expression { transformer }

Here, the output-type is an event type defined in the CORBA IDL file2 designat-
ing the type of the event sent out by this correlator. It is followed by the keyword
correlation and an identifier name denominating the correlation. The events
handled by this correlator are then provided as a list of typed identifiers which,
in analogy to the parameters of a method, are later bound to event ports in
the system assembly. The filter-expression defines the event subsequences upon
which the correlation is supposed to trigger as an expression over the identifiers
from the typed identifier list using combinators and labels in the syntax and
semantics given previously in this section. Example:

Notification correlation AfterTimeout (TimeOut a, DataAvailable b)
a ; b {. . . }

Here, the identifier a will be bound to a port issuing TimeOut-events, while b
is bound to a DataAvailable port. The correlation triggers on every sequence
which contains a TimeOut and later a DataAvailable-event. The parenthesis
“{. . . }” stands for the transformer, which is discussed in the next section.

3 The Transformer

3.1 Outline of the Transformer

The transformer provides the second step of our two phase model. As indicated
in section 2.5, the input for the transformer is a set of active labels delivered by
the filter. The function of the transformer is to assemble a new event based on
various of the available incoming events and to push that event to the receiver(s)
whenever a trigger is complete. In section 4 we will assign further objectives
to the transformer, namely the possibility to perform dynamic changes to the
correlator’s behavior, to add more flexibility.

The transformer has two parts. The first part is an initialization, for which
the discussion will also be deferred to section 4. The second part consists of case
clauses branching on boolean expressions over the labels, assigning the values
true to active and false to inactive labels respectively.

3.2 The Basic Transformer Syntax

An abbreviated grammar for the transformer is shown in Fig. 2. The substantial
parts of the transformer are the case-clauses. Each case features a boolean
expression over the labels. Upon a trigger, the body of each case, for which the
associated label expression evaluates to true is executed.
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transformer ::= init ( case )∗ label-exp ::= disjunct ( | disjunct )∗

case ::= case label-exp : ( statement )∗ disjunct ::= conjunct ( & conjunct )∗

statement ::= push event; conjunct ::= !conjunct
event ::= identifier | ( label-exp )

| new event-initial | label
event-initial ::= type { attr-assignments } | true

attr-assignments ::= ( attribute := identifier.attribute )∗

Fig. 2. Basic Transformer Grammar.

For now there are three possible actions to take inside the body of a case
clause: First, one of the events can be just propagated through, by giving the
identifier of the event as argument to the push statement. A side condition
is that the type of the event is a subtype of the declared output type of the
correlation.Second, the correlator can assemble a new event of a given type,
which again must be a subtype of the declared output type. The third, and at
first sight trivial option is to do nothing at all. The section 3.4 though will show
how this adds considerably to the possibilities of our approach.

3.3 The Transformer Output

For the assembly of an event we provide the new statement. It receives an event
type defined in a separate file using the CORBA Interface Definition Language
(IDL)3 and a comma separated list of attribute assignments enclosed in curly
brackets. For example the following lines define two event-types in IDL-syntax,
where event DataNotify inherits from event Notify:

eventtype Notify {
attribute short SourceID;

};

eventtype DataNotify : Notify {
attribute float Value;

};

A transformer, given e. g. an input DataNotify event a, can assemble an output
Notify event with the statement

push new Notify { SourceID = a.SourceID }

We make use of the inheritance subtyping given by the IDL event declarations,
i. e. whenever e. g. Notify is defined to be the event type of an incoming event,
the correlator accepts events of type DataNotify or any other subtype, similarly
it can send out events of any type which is subtype of the declared output type.

3.4 Examples

Double Match. In [11], Boeing engineers discuss correlations in the context
of the Boeing Bold Stroke framework. In their example, a receiving component
is interested in notifications from three different event sources, referred to as A,
B and C. A correlation occurs whenever either both, component A and B, or
3 See section 5.
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case l1: push new NavData
{ air = a.air, nav = b.nav }

case l2: push new NavData
{ air = a.air, nav = c.nav }

(a) Send data from both events

case l1: push new NavData
{ air = a.air, nav = b.nav }

case l2 & !l1: push new NavData
{ air = a.air, nav = c.nav }

(b) Take only b if present

case true: push new DataAvailable {}

(c) Send general notification

Fig. 3. Handling a Double Match Trigger.

both, component A and C have issued an event4. The filter expression describing
this pattern is a+b|a+c, or equivalently a+(b|c). Consider the following stream
of incoming events: . . . cba. The sequence matches the expression, and hence is,
assuming no previous overlapping trigger, a trigger for the filter. Note though,
that the sequence is a match for both subexpressions a+b as well as a+c. Nat-
urally, there must be a clear definition on how to handle this case. To discuss
these, we label the subexpressions as follows: l1:(a+b)|l2:(a+c). Fig. 3 presents
three different possibilities for the transformer to react to a trigger.

In Fig. 3(a) the transformer sends an event containing data from the incoming
event a if l1 is active, or an event containing data from event b if l2 is active. If
both labels are active though, as is the case with the above mentioned trigger,
the transformer of Fig. 3(a) will generate two events. This complies with the
policy informally described in [11].

Fig. 3(b) presents an alternative strategy, where the combination of event a
with event b is favored over the combination of a and c. Again, this behavior
is easy to specify by accessing the active labels: if l1 is active the output is
assembled from b. Only if l1 is not active, the transformer uses c. A behavior
like this, although it suggests itself in many common situations, is extremely
complicated to describe in any of the previous approaches.

In many cases, a component may not be interested in particular payload
values arriving in correlated events, i.e., the component simply needs to know
that a correlation trigger has occurred. In this case, the transformer can be
constructed to simply output an event with empty payload as shown in Fig. 3(c).
Here, upon any trigger the same notification event is generated, regardless of the
incoming events.

Interleaving Event. A primitive offered by other frameworks is the non-
interleaving or do-unless correlation, expressed e. g. with {e1;e2}!e3 in [7],
or with do{φ1}unless{φ2} in [10]. Common to these primitives is that some
4 In one of the Bold Stroke examples, the modal scenario, this situation is given by

two different steering queues, which correlate with a single air-frame as input to the
combined display.
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expression is pursued on the stream of incoming events until it is interrupted
and reset by an interleaving event. For example, after the occurrence of e1 in
the above expression from the GEM framework, the correlator looks for e2 or
interrupts if e3 comes in between. Similarly in the Stanford approach the ex-
pression φ1 is evaluated in parallel with φ2, and if φ2 succeeds earlier, then the
whole expression results in a fail.

Our model provides the same functionality without an additional primitive.
Consider an expression x0 which should not be interrupted by the completion of a
second expression x1. The filter expression l1:x0|l2:x1 executes both expressions
in parallel, resetting whenever either one triggers. As shown in Fig. 4(a) this
is fully sufficient to prohibit interleaving of the two subexpressions, simply by
ignoring the label l2. Unlike previous approaches though, we can even safely
handle a case where, similar to the double match example, both expressions
complete with the arrival of the same event, e. g. by explicitly requiring the label
l2 not to be active when sending out the result. This is done by replacing the
label expression l1 by the expression l1 & !l2 in Fig. 4(a). Further, whenever
this expression is integrated as a subexpression into a larger context, it is easy
to refer to either x0 or x1 by using the labels, e. g. to catch and handle the
interleaving reset event, instead of ignoring it.

case l1: push new event
p

(a) Prohibit interleaving

case l1: push b
case l2: push a

(b) Most recent event

Fig. 4. Interleaving Semantics and Most Recent Event.

Most Recent. Consider a component interested in the accumulation of two
events a and b. One possible filter which recognizes this accumulation is a+b. It
is possible though to retrieve further information, e. g. about the order in which
the events arrive. To achieve this, we expand and label the expression into an
equivalent expression l1:(a;b)|l2:(b;a). Still, this filter triggers whenever both,
a and b are present in the incoming stream of events. The transformer body
shown in Fig. 4(b) transfers the most recent of both events through to the
subscriber.

4 Dynamic Changes

4.1 Changing Requirements

The communication structure in component based distributed systems is usu-
ally subject to dynamic modifications as it has to adapt to changes in the com-
ponent’s behavior as well as varying environmental properties. Especially the
different operandi of the components referred to as modes cause frequent alter-
ations to the communication. A correlator which is designed to work throughout
the system’s runtime has to offer possibilities to adjust both, filtering as well as
transformation and propagation of events, to changing requirements.
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In analogy to the modes of the components, some earlier approaches provide
modes also for the correlator represented by mode guards, each of which in turn
encapsulates a complete correlation definition. Nevertheless, according to our
assessment of the component scenarios provided to us by the Boeing company,
changes to the correlator rarely require an exchange of the whole definition by
an entirely different one, instead the most common change is simply temporary
absence of single events. Our approach aims to provide easy means to express
this common scheme while still supporting more complicated dynamic adaption.

4.2 Cancelling Subexpressions

In our model, dynamic changes are realized by dropping or restoring subexpres-
sions of the filter. We hence introduce two different states for each subexpression,
alive and aborted. Similarly to the filter semantics given in section 2, we identify
a label with the subexpression marked by the label, i. e. a label is aborted iff the
marked expression is aborted and alive iff the marked expression is alive.

Definition 8. Let xa be an aborted expression. Then for any filter expression
x0 and any combinator ⊕ ∈ {;, |, +, ||} we have that L(xa ⊕ x0) = L(x0 ⊕ xa) =
L(x0).

In short, an aborted subexpression will simply be ignored by the filter. Note
though, that for different combinators this definition has different implications,
e. g. in an accumulation an aborted subexpression will be treated as “always
present” while in a collection it will be treated as “never occurring”.

Similarly to an aborted expression, any literal containing the attached label
is also ignored in the label expressions guarding the cases in the transformer.

Definition 9. Let la be an aborted label. Then for any label expression x0 and
any boolean operator ⊕ ∈ {&, |} we have that λa ⊕ x0 ≡ x0 ⊕ λa ≡ x0, where λa

is either la or !la. An empty expression evaluates to false.

Analogous to the filter expressions, this definition interprets an aborted label’s
literal as true in a conjunction and as false in a disjunction.

init ::= ( commuter-stmt; )∗ commuter-stmt ::= abort (label (, label)∗ )
statement ::= push event; | revive (label (, label)∗ )

| commuter-stmt; | toggle (label (, label)∗ )

Fig. 5. Transformer Grammar Extensions.

4.3 Additions to the Filter Syntax

Fig. 5 shows the extensions to the transformer grammar which enable the dy-
namic features of the correlator5. With the statements abort (l) and revive (l)
label l and the subexpression marked by l can be dropped and restored, the
toggle (l) statement switches between abort and alive state. By default every
label is initially alive. Whenever a label is supposed to be in abort state initially,
it has to be switched off in the initialization part of the transformer.
5 Note the basic grammar in Fig. 2.
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4.4 Simulation of a Mode-Based Approach

Consider a mode expression from [10] with n mode guard expressions g1, . . . gn
and enclosed correlator expressions x1, . . . xn :

in (g1) do {x1} . . . in (gn) do {xn}
We can easily simulate this functionality with the following filter expression:

m1: x1 | . . . | mn: xn || l1: g1 | . . . | ln: gn

and the following transformer

{ abort (m1, . . .mn);

case l1: abort (m1, . . .mn); revive (m1);

. . .
case ln: abort (m1, . . .mn); revive (mn);

internal cases of the different expressions }.

Therefore the mode based approach offers no expressive power beyond our ap-
proach.

4.5 Example: Dropping an Unreliable Source

A common task for a correlator in Distributed Realtime Environment (DRE)
applications is to accumulate all incoming events from e. g. a redundant sensor
array and to send a combined event to the receiving component. We assume four
sources referred to as A, B, C and D, with the events a, b, c and d. We further
assume that a controlling component is able to determine the logical validity
[9] of the data issued by the sources, and reacts to invalid data by issuing a
shutdown event, telling the correlator to ignore the corresponding source. The
filter expression hence is

ma:a + mb:b + mc:c + md:d || la:ca || lb:cb || lc:cc || ld:cd

Accordingly, the transformer is

{ case la: abort (ma);

case lb: abort (mb);

case lc: abort (mc);

case ld: abort (md);

case ma & mb & mc & md: push new DataAvailable {} }

If we want to enable the controlling component to be able to revive the dropped
sources again, we can similarly use toggle instead of abort. Note though, that
to cover every possible case with n redundant sensors a mode based approach
as proposed by [10] would need up to 2n different modes to achieve the same
functionality. We are not aware of any support for dynamic modification of the
correlator’s behavior in previous works other than the above cited mode based
proposal from Stanford.
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Fig. 6. The Elements of a Cadena Specification.

5 Use in Cadena

We implemented the correlation framework described here in Cadena, a de-
velopment environment we built for constructing distributed systems using the
CORBA Component Model [4]. Cadena provides a wide range of support for
modeling, analysis, and automatic code generation including facilities for specify-
ing CCM component interfaces using CCM IDL, editors for allocating component
instances and constructing connections between these instances, specifying com-
ponent attributes, various forms of architectural-level analysis such as model
slicing and model-checking against temporal specifications, and the ability to
generate component code from IDL specifications using existing CCM implemen-
tations such as OpenCCM [8] (generating Java code) and CIAO [1] (generating
C++ code). Cadena is implemented in IBM’s Eclipse[3] open-source integrated
development environment.

In Cadena, development begins by modeling components using CCM IDL
which defines the external interfaces of components. Cadena provides an ad-
ditional component property specification (.cps) file that is used to various
lightweight semantic properties of a component including dependences between
actions on a component’s ports and an abstract transition semantics for the
component (see Fig. 6).

Once components are modeled, a “system layout” is constructed in which
instances of components are allocated and component ports of these instances
are hooked together. Component instance connection information is held in com-
ponent assembly description file. As Fig. 6 illustrates, correlations specified in
.cor files can also be captured in the model. Various forms of static analysis
and behavioral checking of the model work on internal representations formed
from the component IDL, .cps, .cad, and .cor files.

Below the modeling level, component implementations are generated from
CCM IDL compilers. Not only do these compilers generate the standard CORBA
stubs and skeletons, they also generate a substantial amount of the code re-
quired to implement component infrastructure such as functionality for con-
necting ports, communicating events, and otherwise support interaction with a
component’s context.

In part of our larger project on development of Cadena infrastructure, other
researchers at Kansas State have developed a flexible Event Communication
Framework (ECF) [2] to augment the basic event propagation mechanisms of
CCM and the lower CORBA layers. ECF is targeted towards optimizing com-
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munication between peers in a distributed system based on middleware in the
presence of event correlation and data replication. Since ECF is independent
of implementation (e.g., the underlying ORB or implementation language) and
architecture (e.g., the topology of a particular application), it can be used seam-
lessly in any CCM-based application. Cadena processes correlator definitions in
the .cor files along with connection information in the .cad file and synthesizes
correlator implementation code to be linked into the CORBA communication
layers and component container and server implementations. In this phase, as an
optimization the framework may break a correlator into parts that realize subex-
pressions of the filter expression depending on the locality of components pro-
ducing events occurring in the subexpressions. We refer to such subexpressions
as node local subexpressions. This reduces network traffic by contributing inter-
node network traffic only when a node local subexpression is satisfied. Likewise,
as the mode of a component can affect the consumption/production of events by
that component, by propogating this information upstream/downstream along
the event flow path further optimization can be achieved. At present, ECF can
use this information to dynamically configure the correlator, as described in
Section 4, depending on the specified behavior and the usage context of the
correlation. This can contribute to reduction in network traffic in a direct or
cascading fashion.

Boeing’s Open Experimental Platform (OEP) provides a set of scenarios
which are representative of how DRE systems are built and used. With the
above mentioned features, we have successfully realized all event correlations
that occur in the scenarios in the above OEP. As the Boeing OEP is based on
Boeing Bold Stroke avionics middleware (built on top of ACE/TAO real-time
middleware), the handling of event correlations in a manner that is compatible
with CCM specifications has removed one of the major obstacles in migrating the
OEP into CCM from the non-standard component model which forms the basis
of the concurrent Bold Stroke implementation and which lacks a substantial
amount of infrastructure (e.g., deployment facilties and IDL code generation)
that is provided by CCM.

6 Related Work

Our work was inspired from the early stages by previous work on event correla-
tion from the GEM project [7] and a group from Stanford [10] also working on
Boeing Bold Stroke. The Stanford model provides a rigorous formal background
by defining the semantics of their definition language using automata similar to
finite automata, called correlation machines. While this approach gives a conve-
nient base for an implementation, we abstained from binding our semantics defi-
nition to a particular computational model, mainly because the implementation
itself (part of our KSU colleagues work on ECF) continues to evolve as we work
with middleware experts from the CIAO/ACE/TAO teams from Vanderbilt and
Washington Universities to adapt the standard CCM event infrastructure into
a form that is better suited for real-time applications. In particular, this effort



www.manaraa.com

158 Georg Jung, John Hatcliff, and Venkatesh Prasad Ranganath

is investigating, e.g., computation time and network traffic optimizations using
partial pre-evaluation of correlations close to the event source.

The Reflex framework [6] provides a fully implemented correlation engine,
together with a specification language called Policy Definition Language. Reflex
generates C++ correlators intended to monitor network events in an internet
like structure. Accessible semantic definitions are informal though. Note, that
CCM uses the notion of events primarily for communication, while Reflex and
other work concentrates on events as a means to monitor system behavior by
some kind of controller.

7 Conclusion

We have presented a flexible framework for event correlation based on the two-
phased approach of event filters and event transformers. Our directions within
the work have been heavily influenced by the special needs of complex high-
reliability real-time systems, and our desire to be able to develop such systems
using the CCM framework. While previous approaches define the complete cor-
relation in a single expression, we believe that employing our two phase model
eases the assembly of meaningful output significantly.

Not only does the separate transformer stage make it easier for the framework
to fit into the CCM type system, it also lends itself to a variety of interesting ca-
pabilities required for the real-time domain. For example, in collaboration with
other middleware researchers, we are investigating approaches for attaching var-
ious real-time and quality of service properties to events. Given these extensions,
transformers are also used to transform priorities, expiration times, and to imple-
ment drop strategies for events. For further development of our model, policies
about event overwriting are being investigated, e. g. for events carrying sensory
data the most recent event has priority over previous, while for an error message
the earliest occurrence is more important. In addition, we are investigating how
such policies may be captured in an extended event type system.
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Abstract. This tool paper gives an overview of Cadena – an integrated
environment for building and modeling systems built using the CORBA
Component Model (CCM). Cadena provides facilities for defining com-
ponent types using CCM IDL, specifying dependency information and
transition system semantics for these types, assembling systems from
CCM components, visualizing various dependence relationships between
components, specifying and verifying correctness properties of models of
CCM systems derived from CCM IDL, component assembly information,
and Cadena specifications, and producing CORBA stubs and skeletons
implemented in Java. Cadena has been applied to build applications in
Boeing’s Bold Stroke framework for avionics mission-control systems.
Cadena is implemented in IBM’s Eclipse open-source IDE and is freely
available.

As software systems become more distributed, developers are increasingly turn-
ing to component-based development frameworks such Java Enterprise Beans
(EJB) and the CORBA Component Model (CCM) to manage the complexities
associated with building distributed systems. These frameworks aid application
developers by providing services for common aspects such as distributed deploy-
ment, event notification, transactions, persistence, and security. Moreover, they
use accepted design patterns (e.g., the event-oriented observer pattern) which
enables a significant amount of code to be auto-generated. Component-based
frameworks are also attractive because the relatively loose coupling between
components facilitates reuse and allows systems to evolve gracefully as old com-
ponents are switched out for new ones.

Even in the domain of distributed real-time embedded (DRE) systems where
hard/soft deadlines and minimal foot-print requirements traditionally have led
� This work was supported in part by the U.S. Army Research Office

(DAAD190110564), by DARPA/IXO’s PCES program (AFRL Contract F33615-
00-C-3044), by Lockheed-Martin, Rockwell-Collins and by Intel Corporation (Grant
11462).

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 160–164, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



www.manaraa.com

Cadena: An Integrated Development Environment 161

developers to eschew sophisticated middleware solutions, component-based in-
frastructures are growing more popular because hardware advances allow real-
time and embedded requirements to be more easily achieved. In addition, com-
ponent-based infrastructures provide a framework for systematically introducing
important domain aspects such time-triggered notification, real-time scheduling,
and fault tolerance.

There is a wide body of literature dealing with the theory of modeling dis-
tributed systems and automated analysis of high-level state-based models using
state-space exploration techniques such as model-checking. However, despite the
popularity of component-based frameworks and their potential to be utilized in
mission- and safety-critical applications, relatively little has been done to scale up
these analysis techniques for the purpose of providing automated analysis tools
for component frameworks. This is particularly the case with CCM – partly due
to the fact that the CCM specification as part of CORBA 3.0 has only recently
been finalized. Popular tools such as Rational Rose do not even provide design
support for CCM yet.

To investigate the effectiveness of a variety of behavioral analysis techniques
for component-based systems, we have built Cadena1 – an integrated develop-
ment environment for high-assurance CCM-based systems.

Cadena provides the following fully implemented capabilities for development
of CCM systems.

– A collection of light-weight specification forms that can be attached to IDL
to specify mode variable domains, intra-component dependencies, and com-
ponent state-transition semantics. These forms have a natural refinement
order so that useful feedback can be obtained with little annotation effort,
and increasing the precision of annotation yields more precise analysis. In
addition, Cadena specifications allow developers to specify the same infor-
mation in different ways, achieving a form of checkable redundancy that is
useful for exposing design flaws.

– Dependency analysis capabilities that allow tracing inter/intra-component
event and data dependencies, as well as algorithms for synthesizing dependen-
cy-based real-time and distribution aspect information.

– A novel model-checking infrastructure (based on our Bogor model-checking
framework [4]) dedicated to event-based inter-component communication via
real-time middleware enables system design models (derived from CCM IDL,
component-assembly descriptions and annotations) to be model-checked for
global system properties.

– Java component stub and skeleton code generated using the OpenCCM [2]
CCM IDL to Java compiler.

– A component assembly framework supporting a variety of visualization and
programming tools for developing component connections.

1 “Cadena” is a Spanish word meaning “chain” or “network”. Cadena is also an
acronym for Component Architecture Development ENvironment for Avionics sys-
tems.
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Fig. 1. Cadena architecture.

– A CCM deployment facility dedicated to the Boeing Bold Stroke architecture
(static component connections with a real-time event-channel) that allows
deployment code to be automatically generated.

– The Cadena tools are implemented as plug-ins to IBM’s Eclipse IDE. This
provides an end-to-end integrated development environment for CCM-based
Java systems.

Figure 1 displays the internal structure of the Cadena toolset. Cadena projects
contain four high-level specification forms: a CORBA 3 IDL file that defines the
structure of component types, a Cadena Property Specification (CPS) file that
specifies various aspects of component behavior including abstract state transi-
tion semantics and information that specifies dependences between component
ports, a Cadena Assembly Description (CAD) that specifies the components in-
stances that form the system, the connections between them, along with other
real-time and distribution property information, and a specification file that
stores information about the desired correctness properties of the system. These
input artifacts are created using customized editors built using Eclipse plug-in
facilities. In particular, the CAD format has a textual editor, a graphical editor,
and a form-based editor that allows one to easily define different projections of
the component assembly (e.g., connections only, particular component attributes
only, etc.). The graph structure described by the CAD is the basic data structure
that is used by the dependency analyzer, the graphical view displayer, and the
deployment code generator (which generates Java code to allocate and connect
components).

Cadena uses the OpenCCM tools [2] to generate system implementations.
The OMG CORBA 3.0 specification standardizes a strategy for compiling IDL
(of which the CCM IDL is part) down to CORBA IDL 2, which can then be
translated to an underlying implementation language such as Java or C++. This
translation process automatically generates a substantial amount of infrastruc-
ture code for tasks such as component creation and connecting and disconnecting
ports. The output code contains the usual CORBA stubs and skeletons, along
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with skeleton implementations of component methods and event handlers. With
this code generation, the developer only needs to implement event handlers and
methods on provided interfaces. In future work we are exploring the extension
of CCM-based code generation strategies to integrate code generation for com-
ponent handler state-machines and global synchronization policies.

When building systems with Cadena, we intend for developers to take the
following steps: (1) load a library of domain-specific components and associated
CPS specifications, (2) define new project-specific components and associated
behavioral CPS specifications, (3) use CAD editors to configure connections be-
tween components, (4) use dependency viewer to examine dependencies, (5) use
non-functional aspect synthesis tools to attach distribution and rate information,
(6) specify desired global correctness properties, (7) generate a transition system
model and model-check correctness properties, and (8) revise system based on
feedback from analysis tools.

Up to this point, Cadena has been applied primarily to develop representative
applications from Boeing’s Bold Stroke avionics mission control software fram-
work. We have worked with engineers from both Boeing and Rockwell-Collins
with a goal to design Cadena and its associated use methodology so that it
could be integrated into the actual Bold Stroke development process. In fact,
we believe that this “customer-driven” context is one of the things that makes
this work interesting and relevant: we address analysis of widely-used general
purpose middleware frameworks and languages, and we design the functionality
and features of our analysis tools to mesh with an actual industrial development
process.

Although Cadena was originally targeted to the avionics domain, it is useful
in many respects for CCM development in general. Even though it currently em-
phasizes Java in its back-end facilities, since CCM is language-neutral, Cadena’s
front-end design capabilities are not Java dependent. For example, we are also
working closely with researchers developing CIAO [1] (a C++ CCM implemen-
tation based on the ACE/TAO real-time middleware framework) to integrate
CIAO into Cadena, and to refine the Cadena APIs to support specification and
modeling of real-time and quality-of-service properties.

There are other development systems that support several important aspects
for DRE systems that Cadena does not, such as timing and schedulability anal-
ysis, reliability and fault analysis, as well as sophisticated deployment strategies.
The primary motivation for our work is to build a system that is robust enough
for development of real systems with the goal of assessing the effectiveness of
applying static analysis, model-checking, and other light-weight formal methods
to CCM-based systems.

The technical foundations of Cadena were presented in [3]. More information
about Cadena including a public distribution, papers, tutorials, talks, example
repository, and guidelines for other researchers wishing to integrate their analysis
tools or CCM implementations into Cadena can be found at the Cadena web
site [5].
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Abstract. In this paper we present a novel approach for the predica-
tive specification of user rights in the context of an object oriented use
case driven development process. We extend the specification of meth-
ods by a permission section describing the right of some actor to call the
method of an object. Moreover, we introduce a representation function
that describes how actors are represented internally in the system. As
syntactic and semantic framework we use a first-order logic with a built-
in notion of objects and classes provided with an algebraic semantics.
We demonstrate that our approach can be realised in OCL.

1 Introduction

The requirement of protecting data from unauthorised user access is as old as
multi-user computing. Applications such as ERP systems or health information
systems with hundreds or thousands of users handling sensible data offer so-
phisticated mechanisms for rights modeling. With the new web technologies the
importance of data protection mechanisms will even grow. The more companies
will open their core business processes to external partners the more important
the enforcement of access rights will become.

Data protection is intimately connected with two aspects – authentication
on the one hand side and access control on the other side. Authentication aims
at identifying actors (persons or external systems) interacting with the system.
Access control is concerned with the protection of information resources.

With the prominent RBAC model an adequate paradigm for implementing
access rights has been developed [1,2,3]. Access rights in this model do not adhere
to single users but are associated with roles. Basically each user may have one
or several roles and each role is associated with a set of permissions, where each
permission defines the kind of access (the operation, e.g. read, update) to some
object. Today the RBAC model is one of the most established access models.
This model is supported by many systems like operation systems, data bases
and middleware platforms.

Despite of the role paradigm, data access control remains a complex task in
real applications. In particular, data access control in most cases concerns dif-
ferent layers ranging from the user interface and the application layer to the

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 165–179, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



www.manaraa.com

166 Ruth Breu and Gerhard Popp

database. Moreover, upcoming inter-organisational applications require novel
(credential-based) techniques for enforcing user rights [4].

Despite the complexity of the task, an aspect neglected so far in the litera-
ture has been the analysis and design phase of user access models. Developing
user right concepts for applications in areas like health care, e-government or
knowledge management requires both an implementation-independent analysis
framework and a step-by-step approach. Moreover, since user access models have
to be developed in close cooperation of system designers and clients user rights
modeling has to be integrated into the requirements engineering process.

In this paper we present an approach to the specification of user access rights
satisfying these needs. In particular, our approach is based on the following three
basic ideas.

First, we conceive user rights modeling as a task within the context of an ob-
ject oriented development method such as the Unified Process [5] or the V-Model
[6]. This means that our method is entirely integrated within the context of busi-
ness process modeling, use case modeling and systems analysis. More generally,
the approach we present in this paper is part of a process model for security
engineering [7]. This process model extends an object oriented kernel model by
techniques, artifacts and activities supporting the systematic construction of
security-critical systems.

Second, our method supports the stepwise development of user right models.
This ranges from informal textual statements to a complete predicative specifi-
cation. The implementation independent specification of user rights has several
advantages. The most important one is that the model developed is a compact
and concise representation of knowledge involving many parts of the implemen-
tation. Moreover, complete user right models have the potential to be automat-
ically transformed into code.

Third, our approach is provided with a formal semantics in an algebraic
setting. On the syntactic side we extend the specification of each method by
a permission section describing for each actor (or role) if this actor has the
right to call this method on an object of the given class. Since actors play a
central role for the specification of access permissions we call our method actor-
centric. The permission is described by a first-order predicate over a structure
with a built-in notion of objects or, in the context of UML, by an OCL state-
ment [8,9].

Additionally, we introduce a representation function to describe how actors
are represented internally in the system. This representation function is an ab-
straction of the authentication procedure in the implementation and allows spec-
ifications of the kind “the user has the right to view his/her own data”. The
semantics of permissions and of the representation function can be embedded in
a straight forward way in the algebraic theory presented in [10,11].

Related work in the literature mainly deals with the RBAC approach (e.g.
[1,2,3]). Our approach goes beyond in several respects. First, we are concerned
with the development process of user right models in the context of object ori-
ented modeling techniques. Moreover, we provide an increased expressiveness by
supporting arbitrary first-order predicates to specify user rights.
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An approach with similar expressiveness is [12]. While this approach has
been designed with the primary goal of code generation, our focus has been the
development of concepts adequate for the whole development process. A scheme
of user rights modeling in the context of use cases has been first presented by [13].
We overtake some of these ideas, but present a more elaborate theory. Further
references in a specific setting are [14,15] dealing with the development process
and checking of user rights in SAP applications.

The rest of this paper is organised as follows. In section 2 we give some back-
ground information. Section 2.1 gives an overview of the artifacts of a kernel
object oriented method our approach is based on. Section 2.2 sketches the syn-
tactical and semantical specification framework. A formal model of user rights
is given in section 3, which is divided into a description of the representation
function (see section 3.1) and permissions (section 3.2). The specification of
permissions in OCL is presented in section 4 and extensions are introduced in
section 5. In section 6 a conclusion is drawn.

In the sequel we assume the reader to be familiar with basic concepts and
notations of object oriented modeling with UML and OCL.

2 Basics

In this section we first give a short overview of the modeling context our approach
is based on. Throughout this paper we will use as running example a case study
based on TimeTool, a software project that was realised in our research group.
TimeTool is a portion of a project management tool allowing team workers to
account worked hours for projects and allowing project managers to supervise
project budgets.

2.1 The Core Object Oriented Artifacts

In this section we will shortly characterise the core artifacts of the object oriented
process together with the dependencies.

The Business Model captures the organizational environment of the IT-
system. The model describes

– Who (or, more precisely, what roles) act in the business domain (actors)
– What activities the actors perform
– Which objects the activities need as input and which objects they produce

as output

In TimeTool the actors are the project manager, the team worker and the ad-
ministrator. Example activities are Account Worked Hours and Post Adjustment
(performed by the team worker or the project manager) and Prepare Monthly
Report (performed by the project manager). Example classes in the application
domain are the project, the accounting and the team worker.

Actors, activities and objects are modeled by several diagrams. In the UML
context this comprises activity diagrams modeling business processes and activ-
ities, and class diagrams modeling the organizational structure of the company
and the structure of static concepts (users, projects, accountings, etc.).
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The System Requirements describe a black box view of the system to be
developed based on the concept of use cases. Each use case corresponds to a
coherent interaction between some actor and the system. The use cases together
describe the whole functionality of the system. Basic concepts of the use case
model are

– the actors interacting with the system
– the use cases
– the objects being involved in the use cases

In extension to business modeling the actors in the use case model might not
only represent human beings (like the team worker and the project manager)
but also external systems. For instance, additional actors in TimeTool are the
web browser and the human resources system which hosts the databases with
available staff and to which the system connects to for data import. Sample use
cases are Account Worked Hours, Adjustment Posting and View Statistics.

The System Requirements basically consist of two descriptions, the use case
diagram together with the textual description of use cases, and the class model
describing the static concepts.

Commonly, the class model of the System Requirements is the same or a
refined version of the class model of the Business Model. Figure 1 depicts the
class model for TimeTool.

ProjectInformation Project Activity ActivityType

Administrator Accounting

description : String

name : String
address : String
email : String
pswd : String
userid : String
state : UserState

name : String
address : String
email : String
pswd : String
userid : String

accountDate : Timestamp
requiredHours : Real
annotation : String

name : String
budget : Real

plannedStart : Timestamp
plannedEnd : Timestamp
realStart : Timestamp
realEnd : Timestamp
plannedHours : Real
state : ActivityState

name : String

1

*

*

1
1
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User

Fig. 1. Class Diagram of the TimeTool Example

The Application Architecture refines the level of description. More pre-
cisely, the system is divided into a set of logical components. Each component
is responsible for a portion of the system structure and behaviour. Interfaces
enable the independent development of the system components.

Concerning the design of the system behavior the textual descriptions of
the use cases are refined into scenarios in the Application Architecture. The
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scenarios describe the use cases as message flows between objects. That way,
an object oriented view of the whole system is achieved. In the UML context
the Application Architecture typically consists of the following diagram types:
One or several component diagrams containing components, interfaces and the
related classes, a set of sequence diagrams each one related to some use case,
and state diagrams modeling complex processes or class interfaces.

Business Model, System Requirements and the Application Architecture have
in common that they rely on an application oriented system view and are inde-
pendent of any technical platform.

The Software Architecture is based on an implementation oriented view of
the system. In this model the hardware and software platform is chosen and
roughly described. Since we will not deal with the platform dependent level in
this paper we do not go into more detail at this place.

2.2 The Specification Framework

As specification framework we use the specification language P-MOS [10,11].
P-MOS supports first-order predicates with a built-in notion of objects and is
provided with a semantics in an algebraic setting. The kernel syntactic constructs
can be found below.

P-MOS can be compared in its expressiveness with OCL but provides the full
flexibility of an algebraic specification language. In our approach P-MOS serves
as an intermediate language for developing concepts and providing a semantics.
As we will demonstrate OCL can be used as target language within our method.

P-MOS Expressions. Each P-MOS expression is based on a class diagram.
The expression describes a navigation in an object structure delivering some
result.

Semantically each P-MOS expression is interpreted in the context of a so-
called object environment describing a concrete object structure over the class
diagram given. P-MOS is a hybrid language which means that we distinguish
between basic types and class types. While an expression of some basic type
(such as Bool or int) denotes a value (true, false, 0, 1, . . . ) an expression of a
class type denotes a reference to an object in the given object structure.

P-MOS expressions are built by the application of one of the six rules that
can be found below. We assume to be given a set of basic data types (such as
Bool and int) and type constructors. In particular, we assume a type constructor
Set[ ] describing sets of arbitrary elements.

(1) Basic Functions. Let f: (s1, . . . , sn) s be a function in a basic data type
(such as +: (int, int) int or true: () Bool). If e1, . . ., en are P-MOS expressions
of type s1, . . ., sn then f(e1, . . ., en) is a P-MOS expression of type s.

(2) Variables. Let X be a set of typed variables. Then each variable x of type s
is a P-MOS expression of type s.
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(3) Attributes. Let A:T be some attribute of class C (T either being some class
name or some basic data type) and e be some P-MOS expression of type C.
Then e.A is a P-MOS expression of Type T.

(4) Assocations. Let us assume an assocation

C D�role
a. . .b

in the class diagram. Then e.role is a P-MOS expression of type Set[D] (D,
resp. in the special case a. . .b = 1. . .1) if e is expression of type C. If the role
name is missing then the navigation expression is constructed by e.d (the class
name D written in lower case).

(5) Generalisation. If e is P-MOS expression of type C and C is subclass of
class D (in the transitive closure) then e is P-MOS expression of type D.

(6) State-Based Functions. Let funct f:(T1,. . .,Tn) T be a state based function
(where T1,. . .,Tn, T are either basic types or classes) and e1, . . ., en are P-
MOS expressions of type T1,. . .,Tn. Then f(e1, . . ., en) is a P-MOS expression
of type T.

A state-based function describes a generic navigation in the given object
structure based on n parameters and delivering a result of type T (either a
basic value or some object reference). The properties of a state-based function
are defined by P-MOS predicates as defined below.

Query operations in the class diagram include state-based functions in the
following way:

For each query operation f:(x1:T1,. . .,xn:Tn):T in class C we define a state
based function funct f:(C,T1,. . .,Tn) T and write expressions f(e,e1, . . ., en) as
e.f(e1, . . ., en) in the usual way.

P-MOS Predicates. Based on the notion of P-MOS expressions P-MOS pred-
icates are formed in the usual way as given in table 1.

Table 1. P-MOS Predicates

P-MOS Predicate Element Description

e1 = e2 e1, e2 P-MOS expressions of the same type
¬P, P1∨P2, P1∧P2, P1⇒P2, P1⇔P2 P, P1, P2 predicates
∀x:T.P, ∃x:T.P P predicate, x variable, T type expression
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Table 2. Access Rights from Team Workers and Project Managers

actor → Team Worker Project Manager
↓ class

Accounting R: all own accountings R/W/C: all accountings of
(independent of the activities of own
project) projects (i.e. where

W/C: own accountings actor is the project
from released manager of)
activities

Activity R: all activities from R/W: all activities of
projects allocated own projects
to the actor C: –

W/C: –

Project R: all projects R: all projects
W/C: – W/C: –

User R: all users R: all users
W/C: – W/C: –

3 Formal Modeling of User Rights

The central notion for capturing individuals and their roles in business process
modeling and use case modeling is that of an actor. For instance, in the business
process model an actor stands for the person (or, more precisely, for the role of
this person) being involved in the business process. In extension, actors in the
use case modeling also may stand for the roles external systems play.

TeamWorker
has permission to

Project

ProjetInfo

Activity

ActivityType

User

Administrator

Accounting

Fig. 2. Actors have Permissions on Objects.

The key idea to the modeling of user rights in our approach is that actors have
some kind of permissions with respect to objects of the class model (see Figure
2). In this respect our user right model both refers to the model containing the
actor (business process model or use case model) and to the class model. The
separation of role concept and classes has the advantage that the way how roles
are represented in the system has not to be fixed within requirements elicitation.

In early phases of the development we may wish to specify user rights in an
informal, textual way. Table 2 depicts such a textual user rights model for our
case study. The informal model contains coarse-grained permission categories
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(R = Read, W = Write, C = Create) for each class. The textual statements
characterise the objects of the given class which the actor may read, write or
create. For large parts of an application such a coarse-grain description may be
sufficient. For critical parts we require more fine-grained ways to express user
rights. For that reason we offer a specification mechanism at the level of methods.
More precisely, each method m in class C is associated with a permission

perm C,m

specifying under which condition an actor has access to call the method on an
object of the given class. In section 5 we will present a mechanism to aggregate
permissions supporting a more coarse-grained level of detail.

What is missing in the framework sketched so far is a connection between
actors and classes. Such a connection is required in cases where permissions refer
to the actor himself like in the example the team worker has read permissions
to own accountings. In order to support such kinds of specifications we provide
a function

rolerep

mapping actors to objects of some class. This class (in most cases some class like
User) is the internal representation of actors. In fact the representation function
is an abstraction of the authentication procedure in the implementation. More
information on that will be given in section 3.1.

To conclude this section we shortly summarise in table 3 the development
steps of a user rights model in the context of the object oriented process.

Table 3. Development Steps of a User Rights Model

Development Step Activities

Business Process Model Informal description of actor permissions in tables.
Use Case Model Adaptation of the informal model to the actors of the

use case model (e.g. including extended systems).
If possible development of a first formal model.

Application Architecture Development of a complete formal model.

In the context of iterative development the abstract user right model has to
be adapted and extended in each iteration (e.g. concerning new classes).

In the sequel we will present the formal mechanism of method permissions
(section 3.1) followed by the representation function (section 3.2).

3.1 The Function rolerep

As motivated in the preceding section the function rolerep maps actors to their
internal representation. In order to provide a homogeneous specification frame-
work within P-MOS we internally extend the class diagram by a class hierarchy
representing the actor roles.
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In particular, we introduce a superclass ACActor modeling all kinds of actors.
Subclasses of the class ACActor are all actors defined in the business process or
use case model, respectively. Actor hierarchies in the use case model are trans-
formed in a corresponding class hierarchy. In the example, we obtain subclasses
ACAdministrator, ACTeamWorker and ACProjectManager, where ACProject-
Manager is a subclass of ACAdministrator (see Figure 3). In our model actors

+

Actor

+

ACActor

passwd
userid

Project

ProjetInfo

Activity

ActivityType

User

ACProject-
Manager

AC
Administrator

AC
TeamMember

ACActor

Administrator Accounting

Adjustment
Posting

Create New
Projects

Modify
Posting

TeamWorker

Administrator

Project-
Manager

Use Case Model and/or
Activity Model

Domain Model

I II

III IV

1

1 *

*

1

1

*

*
*

*

*

*

1
1

1
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m
an
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is of
kind

Fig. 3. The Extension of Actor Classes for an Actor–User Mapping.

also may have attributes. These attributes represent the input that is required
to authenticate the actor (human being or external system) within the system.
In most cases the attributes are the userid and the password, but also biometric
data, credentials or “no information” (if the actor is anonymous to the system)
are possible.

Formally, the (state-based) representation function rolerep has the function-
ality

funct rolerep : (ACActor) Object

where Object is the superclass of all classes (like in Java).
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The function rolerep is part of the actor class ACActor and can be specified
in this class for all actor types, or in each subclass for specific actor types. Equiv-
alently the function rolerep can be conceived as query operation of functionality
rolerep : ()Object.

As example we present the specification of the rolerep function for the two
actors TeamWorker and Administrator of the TimeTool example.

ACTeamWorker

passwd: String
userid: String

rolerep : () Object
∀ tw : ACTeamWorker . ∀u : User . tw.rolerep () = u ⇒

u.state = �active ∧
tw.userid = u.userid ∧ tw.passwd = u.passwd

ACProjectManager

rolerep : () Object
∀ pm : ACProjectManager . ∀u : User . pm.rolerep () = u ⇒

∃ p : Project . p.projectmanager = u

The specification of actors including the representation function in our mod-
eling framework is part of the actor description in the use case model. During
construction the representation function is implemented by the authentification
procedure.

3.2 Permissions

Permissions are method preconditions associated with the semantics that the
corresponding method can only be executed if the permission expression is eval-
uated to true at the beginning of the execution. Since the basis for our approach
is the fail-safe defaults principle, every method execution which is not permit-
ted explicitly through a permission is prohibited. Each method permission may
depend on the calling actor, on the actual object, and on the actual parameters
of the method call. Thus, permissions are state-based functions of the kind

funct perm C,m : (ACActor, C, T1, . . . , Tn) Bool

where C is a class, and m a method in C of the form m-id : (x1 : T1, . . . , xn :
Tn) T (In the special case of create methods or class methods the parameter of
type C is omitted).

The properties of method permissions are specified by P-MOS predicates
describing conditions over the given object structure.

In the following we will give a few examples of permission specifications.
We model some access rights from Table 2 for the team worker and the project
manager of our TimeTool example.
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Example 1a: As first example we specify the permission that a team worker
can read all his own accountings, independent of the project the accounting
belongs to. As sample we use the method getAccountingDate() as representative
for a reading method.

∀ tw : ACTeamWorker . ∀ a : Accounting .

a.user = tw.rolerep ()
⇒ perm Accounting, getAccountingDate(tw, a)

The expression states, that the user object, that is linked with the accounting
object must be the internal representation of the given team worker. Only if this
expression evaluates to true, the team worker has access to the getAccounting-
Date() method of the class Accounting.

Example 1b: As second example we consider the permission that a project
manager can read all accountings associated with his own projects. Again we
specify the permission of getAccountingDate.

∀ pm : ACProjectManager . ∀ a : Accounting .

a.activity.project.projectmanager = pm.rolerep ()
⇒ perm Accounting, getAccountingDate(pm, a)

Example 2: A further permission for the team worker is, that he can only write
accountings to released activities. Activities are associated with a state which
may be set to released or frozen. In this way, it can be prohibited that somebody
manipulates accounting objects related to finished activities. The permission is
given in the following predicate:

∀ tw : ACTeamWorker . ∀ a : Accounting .

a.user = tw.rolerep () ∧
a.activity.state = �released

⇒ perm Accounting, writeAccountingDate(u, a)

Example 3: As last example we study the permission of a create method. The
project manager can only create accountings from activities of own projects.
Here we assume for short, that the create method has the activity and the user
the accounting refers to as only attributes.

∀ pm : ACProjectManager . ∀ ac : Activity . ∀u : User .

ac.project.projectmanager = pm.rolerep ()
⇒ perm Accounting, create(pm, ac, ac)
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Permission Inheritance. There are two aspects where the specification of
permissions interferes with the concept of ineritance.

The first aspect is related with the hierarchy of actors (see quarter IV of
Figure 3). In our example the project manager is a special kind of team worker.
Thus, for permissions of a project manager not only the axioms for project man-
agers but also for team workers hold. For instance, referring to Example 1 and 2,
a project manager has reading access both to his own accountings (independent
of the projects) and to all accountings of his own project (independent of the
user).

The second aspect is related with inheritance in the domain model referring
to the objects that we want to protect with our permissions. In the same way
as above, methods of subclasses inherit the permissions of their superclasses. In
addition, we provide the possibility to let permissions unspecified in superclasses
and deferring their specification to their subclasses.

4 Specification of Access Policies in OCL

Regarding tool support for the modelling of access rights and for implementa-
tion aspects the formal specification in the framework presented has to be trans-
formed into a specification language, designed especially for use in the context
of diagrammatic specification languages such as UML.

In the following we show the realisation of our concepts within the Object
Constraint Language (OCL) [8,9] that is part of UML. We extend the spec-
ification section of a method (comprising the pre- and postcondition) by an
additional permission section. In this section the method permission is specified
by an OCL-expression using the variables of the method, the actual object and
the actor which is handled as parameter of the permission section.

The representation function rolerep is treated as query operation of the actor
hierarchy as introduced in section 3.1 and may be used in the permission section.

Example 1: A team worker can read all his own accountings, independent of
the project the accounting belongs to (exemplified by the permission of getAc-
countingDate).

context Accounting :: getAccountingDate()
perm (act : ACTeamWorker):

self.user = act.rolerep()

Example 2: A team worker can only write own accountings of released activi-
ties.

context Accounting :: writeAccountingDate()
perm (act : ACTeamWorker):
self.user = act.rolerep() and
self.activity.state = ActivityState::released
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Example 3: The project manager can only create accountings for activities of
own projects, i.e. activities of projects, where he is project manager of.

context Accounting :: create(a : Activity, u : User)
perm (act : ACProjectManager):
a.project.projectmanager = act.rolerep()

Regarding the semantics of a method permission it has to be made clear
that the given actor is not the object directly calling the method but the role
initiating the call of this method from outside the system (eventually causing
a chain of method calls). In the implementation the calling actors can be han-
dled by an additional method parameter or, like in J2EE, by some method call
infrastructure.

5 Extensions

As explained in the previous section our basic view of user rights is that of
an actor having permission to perform a certain method on a certain object.
This fine-grained paradigm provides a maximum of flexibility for specifying any
kind of user permissions in all phases of the development. However, it is clear
that for practical applications we need an aggregation mechanism for supporting
more coarse-grained specifications. We therefore introduce the notion of method
categories. A method category CAT basically is a set of methods

CAT ⊆ METH

where METH is the set of all methods (sorted by the classes they belong to)
in the system. Categories may contain methods of a single class (we use the
class name as index in this case) or of several classes. Moreover, categories may
comprise other categories, i.e. categories may be structured in a hierarchical way.
We define coarse-grained permissions

perm CatC
: (ACActor, C) Bool

for each category CatC containing methods of class C. A category permission
induces method permissions in the obvious way.

∀ a : ACActor, o : C, a1 : T1, . . . , an : Tn .

perm CatC
(a, o) ⇒ perm C,m(a, o, a1, . . . , an)

for all methods m of class C in CatC . Of course, such a category permission
may only depend on the actor and the actual object.

If a category Cat comprises methods of different classes (and create methods)
we define permissions.

perm Cat : (ACActor) Bool
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and induce the following method permissions for all methods m of class C in
Cat.

∀ a : ACActor, o : C, a1 : T1, . . . , an : Tn .

perm Cat(a) ⇒ perm C,m(a, o, o1, . . . , on)

Category permissions of this kind only depend on the actor initiating the method
call. Concerning the application of this concept we provide a set of predefined
categories:

READC the category of all methods reading some attribute of class C
UPDATEC the category of all methods updating some attributes of class C
CREATEC the category of all creation methods of class C

Moreover, we define the get and set methods of attributes to be predefined
members of the READC and UPDATEC category, respectively. Please notice
that there may be methods both belonging to the READC and the UPDATEC

category.
As an example the informal specifications of Table 2 can be immediately

expressed in a corresponding way with method categories. E.g. the clause ”The
team worker can read all own accountings” can be expressed with the following
category permission:

∀ tw : ACTeamWorker . ∀ a : Accounting .

a.user = tw.rolerep ()
⇒ perm READAccounting

(ac, a)

The set of predefined method categories may be replaced and complemented by
user-defined categories. This is advisable if a whole part of the class diagram
is associated with the same kind of permissions (e.g. the permission true). A
further typical case in which we need a more fine-grained categorisation is the
following. The attributes of a class (e.g. Person) are divided into critical (e.g.
salary of a person) and uncritical ones (e.g. name and address of a person).

6 Conclusion

In the preceding sections we introduced a formal specification framework for
the modeling of user rights. Our method is novel in the respect that it is com-
pletely integrated in the concepts of use case driven object oriented modeling
and provides the full expressiveness of first-order logic. We separate the aspects
of authentication and data access and thus enable a concise specification of per-
missions connecting roles and their internal representation. We both support the
specification of permissions on the most fine-grained level of methods and on a
coarse-grained level based on the notion of method categories.

Currently we conduct two case studies in real contexts (health information
systems, e-government) in order to validate our approach. Future work will be
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done in several directions. First of all we will develop tool support for our method.
This comprises the possibility to develop method permissions, actor specifica-
tions and the definition of categories and category permissions within some UML
tool. Moreover, our concept of specifying permissions well be applied in imple-
mentation oriented contexts. In the project SECTINO we develop a framework
for specifying access policies for inter-organisational workflows based on Web
Services. Besides this, we work on a testing environment testing and analysing
rights in collaborative systems.
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Abstract. Organizations use Role-Based Access Control (RBAC) to protect com-
puter-based resources from unauthorized access. There has been considerable
work on formally specifying RBAC policies but there is still a need for RBAC
policy specification techniques that can be integrated into software design meth-
ods. This paper describes a method for incorporating specifications of RBAC
policies into UML design models. Reusable RBAC policies are specified as pat-
terns and are expressed using UML template diagrams. Incorporating RBAC poli-
cies into an application specific model involves instantiating the patterns and
composing the instantiations with the model. The method also includes a tech-
nique for specifying patterns of RBAC violations. Developers can use the pat-
terns to identify policy violations in their models. The method is illustrated using
a small banking application.

1 Introduction

Access control policies are constraints that protect computer-based information re-
sources from unauthorized access. Role-Based Access Control (RBAC) [8] is used by
many organizations to protect their information resources from unauthorized access.
RBAC policies are defined in terms of permissions that are associated with roles as-
signed to users. A permission determines what operations a user assigned to a role can
perform on information resources.

Work on formalization of RBAC policies has resulted in the development of new
specification notations (e.g., see [1]), but there is still a need for policy specification
approaches that can be integrated with design techniques used in industry. The Unified
Modeling Language (UML) is considered to be the industry de-facto standard for mod-
eling software-based systems. Use of the UML to specify RBAC policies eases the task
of incorporating the policies into UML application models.

This paper describes a method that integrates RBAC policy specification and UML
design modeling. The method includes (1) a technique for specifying generic RBAC
policies as patterns that can be instantiated to produce application-specific design struc-
tures that specify the RBAC constraints, (2) techniques for systematically incorporating
design structures produced by RBAC policy patterns into UML design models, and (3)
a technique for specifying design structures that violate RBAC constraints as patterns.

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 180–193, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Generic RBAC policies are specified by patterns expressed as UML diagram templates.
Instantiating a RBAC pattern to produce an application-specific RBAC design structure
involves binding the template parameters to application-specific design elements.

The RBAC patterns can be used to support at least two approaches to incorporating
RBAC constraints into a UML design model: (1) The templates can be used to produce
an initial design structure that is then extended to address other design concerns; and
(2) the design structures produced by the templates can be merged with a previously
developed application design model, referred to as the primary model, to obtain a design
model that specifies RBAC constraints.

The method also provides a technique for specifying RBAC constraint violations as
patterns. The violation patterns are expressed as template object diagrams, and can be
used to check for the presence of violations in designs. To ease the task of checking for
violations using the patterns we have developed an approach to visualizing application-
specific RBAC constraints as object diagrams.

An overview of RBAC is given in Section 2. In Section 3 we present a generic
RBAC model expressed as a class diagram template, and give examples of object dia-
gram templates that describe patterns of policy violations. Section 4 describes how the
RBAC pattern can be incorporated into a primary model. Section 5 gives examples of
application-specific RBAC policies expressed as object diagrams. Section 6 illustrates
how the violation patterns described by object diagram templates can be used to detect
violations in application-specific RBAC policies. An overview of related work is pro-
vided in Section 7. The paper concludes with a discussion of current limitations of the
approach and our plans to address the limitations.

2 Overview of RBAC

RBAC constraints can be organized as follows: Core RBAC, Hierarchical RBAC, Static
Separation of Duty Relations, and Dynamic Separation of Duty Relations.

Core RBAC embodies the essential aspects of RBAC. The constraints specified by
Core RBAC are present in any RBAC model. The Core RBAC requires that users be
assigned to roles (job function), roles be associated with permissions (approval to per-
form an operation on an object), and users acquire permissions by being assigned to
roles. The Core RBAC does not place any constraint on the cardinalities of the user-
role assignment relation or the permission-role association. Core RBAC also includes
the notion of user sessions. A user establishes a session during which he activates a
subset of the roles assigned to him. Each user can activate multiple sessions; however,
each session is associated with only one user. The operations that a user can perform in
a session depend on the roles activated in that session and the permissions associated
with those roles.

Hierarchical RBAC adds features supporting role hierarchies. Hierarchies are used
to describe a structure of roles in an organization. Role hierarchies define an inheritance
relation among the roles. Role r1 inherits from role r2 only if all permissions of r2
are also permissions of r1 and all users of r1 are also users of r2. The inheritance
relationship is reflexive, transitive and anti-symmetric.
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Static Separation of Duty (SSD) relations are necessary to prevent conflict of in-
terests that arise when a user gains permissions associated with conflicting roles (roles
that cannot be assigned to the same user). SSD relations are specified for any pair of
roles that conflict. The SSD relation places a constraint on the assignment of users to
roles, that is, assignment to a role that takes part in an SSD relation prevents the user
from being assigned to the related conflicting role. The SSD relationship is symmetric,
but it is neither reflexive nor transitive. SSD may exist in the absence of role hierarchies
(referred to as SSD RBAC), or in the presence of role hierarchies (referred to as hier-
archical SSD RBAC). The presence of role hierarchies complicates the enforcement of
the SSD relations: before assigning users to roles not only should one check the direct
user assignments but also the indirect user assignments that occur due to the presence
of the role hierarchies.

Dynamic Separation of Duty (DSD) relations aim to prevent conflict of interests as
well. The DSD relations place constraints on the roles that can be activated in a user’s
session. If one role that takes part in a DSD relation is activated, the user cannot activate
the related (conflicting) role in the same session. A model of RBAC is shown in Fig. 1.

user_sessions session_roles

USERS
Permission Assignment

(PA)(UA)
User Assignment

Role HierarchySSD
(RH)

DSD

ROLES

SESSIONS

OPS OBS

PRMS

Fig. 1. RBAC.

The RBAC in Fig. 1 consists of: 1) a set of users (USERS) where a user is an intelli-
gent autonomous agent, 2) a set of roles (ROLES) where a role is a job function, 3) a set
of objects (OBS) where an object is an entity that contains or receives information, 4) a
set of operations (OPS) where an operation is an executable image of a program, and 5)
a set of permissions (PRMS) where a permission is an approval to perform an operation
on objects. The cardinalities of the relationships are indicated by the absence (denoting
one) or presence of arrows (denoting many) on the corresponding associations. For ex-
ample, the association of user to session is one-to-many. All other associations shown
in the figure are many-to-many. The association labeled Role Hierarchy defines the in-
heritance relationship among roles. The association labeled SSD specifies the roles that
conflict with each other. The association labeled DSD specifies the roles that cannot be
activated within a session by the same user.
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|Name: |String

|GrantPermission (|p : |Permission)
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|q|ExecuteOn
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|g

|c|b |CheckAccess(|obj : |Object,

|Permission

|Role

Fig. 2. A RBAC Class Diagram Template.

3 A Reusable RBAC Model

In this section a RBAC pattern is described as a UML template class diagram. A class
diagram is obtained from a template diagram by binding the parameters to values. Fig. 2
shows a class diagram template describing hierarchical RBAC with SSD and DSD. The
symbol “|” is used to indicate parameters. We use this notation when there is a large
number of parameters because the standard UML parameter notation is cumbersome.

The class diagram template shown in Fig. 2 consists of class and association tem-
plates. A class template is a class descriptor with parameters. Class templates are as-
sociated with attribute templates (e.g., |Name : String in Role) and operation templates
(e.g., |GrantPermission in Role). Association templates (e.g., |UserAssignment) con-
sist of parameters for association names and association-end multiplicities. The OCL
constraints in Fig. 2 restrict the values that can be bound to association-end multiplicity
parameters. For example, {|o.lower = 1} restricts the multiplicities that can be bound
to the parameter o to ranges that have a lower bound of 1. The multiplicity “1” on the
UserSessions association-end attached to User is strict: a session can only be associated
with one user.

The User class template defines classes that describe users. A user can create a new
session (CreateSession), delete a session (DeleteSession), associate self with a new role
(AssignRole) and remove an associated role (DeassignRole). A UserSessions link (i.e.,
an instance of an association obtained by binding the parameters of UserSessions to
values) is created by a CreateSession operation (i.e., an operation obtained by binding
the operation template parameters to values) and deleted by a DeleteSession operation.
The operation AssignRole creates a UserAssignment link; the DeassignRole removes a
UserAssignment link.
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The class template Role is used to produce classes representing roles with behavior
that (1) associates a new permission with the role (GrantPermission), (2) deletes an ex-
isting permission associated with the role (RevokePermission), (3) adds an immediate
inheriting role (AddInheritance), (4) deletes an immediate inheriting role (DeleteInher-
itance), (5) adds a role to the set of conflicting roles (AddSSDRole), (6) deletes a role
from the existing set of conflicting roles (DeleteSSDRole), (7) checks whether the role
is in an SSD relationship with a given role in the presence of hierarchies (CheckSSD),
(8) checks whether the role has a given permission (CheckAccess), (9) checks whether
the role is in a DSD relation with a given role (CheckDSD), (10) deletes a DSD relation
between the role and a given role (DeleteDSDRole), and (11) adds a DSD relation with
a given role (AddDSDRole). The class template Session is associated with the template
operations: AddActiveRole (activates a role in a session), DropActiveRole (deactivates
a role in a session), and CheckAccess (checks whether the role has the permission to
perform an operation on an object).

The class template Permission is associated with an operation template, CheckAc-
cess, that checks whether the role has the permission to perform the operation on the
object.

Each operation template is associated with an OCL template expression that pro-
duces OCL pre- and post-conditions when the template parameters are bound to values.
Pre- and post-condition templates associated with the CreateSession and
GrantPermission operation templates are given below:

context |User::|CreateSession():(|s:|Session)
post: result = |s and
|s.oclIsNew() = true and self.|Session → includes(|s)

context |Role::|GrantPermission (|p:|Permission)
post: self.|Permission → includes(|p)

We express RBAC constraints that restrict SSD and DSD relationships as OCL tem-
plate expressions. Examples of these constraints are given below:

– SSD constraint. A user cannot be assigned to two roles that are involved in an SSD
relation.

context |User inv:
self.|Role → forAll(r1, r2 | r1.|SSD → excludes(r2))

– Hierarchical SSD constraint. There cannot be roles in an SSD relation which have
the same senior role.

context |Role inv:
let allSenior(r1) = r1.senior → union(r1.senior → collect(r2 | allSenior(r2)))
in

self.|SSD → forAll(r1 | allSenior(r1) → excludesAll(allSenior(self))

– DSD constraint. A user cannot activate two roles in DSD relation within a session.
context |User inv:

|self.|Session.|Activates → forAll(r1, r2 | r1.|DSD → excludes(r2))
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4 Applying the RBAC Model

To illustrate our approach we use a simple banking application taken from [5]. The
application is used by various bank officers to perform transactions on customer deposit
accounts, customer loan accounts, ledger posting rules, and general ledger reports. The
transactions include 1) create, delete, or modify customer deposit accounts, 2) create,
delete, or modify customer loan accounts, 3) modify the ledger posting rules, and 4)
create general ledger report. A class diagram (the primary model) for the application is
shown in Fig. 3. Class attributes and operations are not shown in the diagram.

Account

* *

*

*

*

CustomerDeposit
Account

BankObject
* executesOn

regulatesPostingOf

isInputOf

LedgerPostingRule GeneralLedgerReport

Transaction

Create ModifyDeleteLoanAccount

Fig. 3. A Partial View of a Banking System Primary Model.

Access control policies are not specified in the primary model. RBAC features can
be incorporated into the primary model by composing an instantiation of the RBAC
template in Fig. 2 with the primary model. The composition is carried out as follows:

1. Instantiating the RBAC template: To incorporate RBAC features into a primary
model, the modeler must first instantiate the RBAC template model by binding pa-
rameters to elements representing concepts in the domain of the primary model. Some
of these model elements may be elements in the primary model. Class diagrams ob-
tained from the RBAC class diagram template are referred to as context-specific RBAC
diagrams. Fig. 4 shows a context-specific RBAC class diagram for the banking appli-
cation. In the diagram, BankRole, BankObject, and Transaction are respectively bound
to Role, Object, and Operation parameters in the RBAC template diagram.

2. Merging the context-specific diagram with the primary model: The view defined
by the context-specific RBAC diagram is merged with the view defined in the primary
model to obtain a composed model. Elements in the instance and the primary model are
merged if and only if they have the same syntactic type (i.e., UML metamodel class)
and name. Model elements in the context-specific RBAC diagram that do not exist in the
primary model are added to the primary model. For example, if the RBAC diagram has
a class with an operation that has the same name, but different signature as a primary
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* name: String

grantPermission (p: Permission)
revokePermission (p: Permission)

Fig. 4. A Context-Specific RBAC Class Diagram.

model operation in a matching class, the operation is included in the composed model,
resulting in an overloaded operation. However, if the RBAC diagram has a class with an
operation with the same name and signature as a primary model operation in a matching
class, either one of the operation names must be changed or the operation specifications
must be logically composed to produce a consistent operation specification. In the first
case, the developer must specify the new name of the operation and in the second case
the developer must specify the logical operator to be used in the composition. These
developer inputs are expressed as composition directives: A directive allows a developer
to vary how RBAC and primary model elements are merged. For more on merging rules
and composition directives see [9, 10].

The result of the composition is a composed model in which access control features
specified by the context-specific RBAC model are incorporated into the primary model.
The composed model for the banking system is shown in Fig. 5. The BankObject and
Transaction classes in the context-specific RBAC diagram are merged with BankObject
and Transaction classes in the primary model, and BankUser, BankRole, BankSession,
and Permission are the RBAC classes that are included in the composed model.

5 Describing Application-Specific RBAC Policies
Using Object Diagrams

Application-specific RBAC policies constrain how system users access system resour-
ces. They determine 1) the assignment of roles to system users, 2) the permissions
associated with roles in the systems, 3) the inheritance relationships between roles,
and 4) the SSD and DSD relationships between roles. In this section we illustrate how
application-specific RBAC policies can be described by object diagrams.
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Fig. 5. The Composed Model.

The RBAC model supports the specification of four types of policies: 1) core poli-
cies that conform to core RBAC, that is, policies that determine user-role and role-
permission assignments, 2) hierarchical policies that conform to hierarchical RBAC,
that is, policies that determine inheritance relationships between roles, 3) SSD policies
that conform to SSD RBAC, that is, policies that determine what roles are conflicting,
and 4) DSD policies that conform to DSD RBAC, that is, policies that determine what
roles to be activated in a session. A set of application-specific RBAC policies for the
banking system is given below:
Core Policies: The roles of the banking system (instances of BankRole) are teller, cus-
tomerRerviceRep, accountant, accountingManager and loanOfficer. The permissions
assigned to these roles are given below:

P1 A teller can modify customer deposit accounts.
P2 A customer service representative can create or delete customer deposit accounts.
P3 An accountant can create general ledger reports.
P4 An accounting manager can modify ledger-posting rules.
P5 A loan officer can create and modify loan accounts.

Fig. 6 shows the object diagrams describing policies P1 to P5 respectively.
Hierarchical Policies: A role hierarchy defines inheritance relationships between roles.
Through the inheritance relationship, a senior role inherits the permissions of its junior
roles and any user assigned to the senior role is also assigned to the junior roles. The
hierarchical policies in the banking application are stated below:
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P4

:LedgerPostingRule

:Modify:PermissionaccountingManager : Role

:CustomerDepositAccount

:Create

:Delete

:PermissioncustomerServiceRep : Role

P2

:GeneralLedgerReport

:Create:Permissionaccountant : Role

:Modify:Permissionteller : Role

P1

P5

P3

:Modify

:Create

:LoanAccount

:PermissionloanOfficer : Role

:CustomerDepositAccount

Fig. 6. Object Diagrams describing Core RBAC Policies.

H1 Customer service representative role is senior to the teller role.
H2 Accounting manager role is senior to the accountant role.

Fig. 7(a),(b) describe policies H1 and H2 respectively.
SSD Policies: SSD policies prevent a user from being assigned to two conflicting roles.
For the banking system the following pairs of roles are conflicting:
{(teller, accountant), (teller, loanOfficer),
(loanOfficer, accountant), (loanOfficer, accountingManager),
(customerServiceRep, accountingManager)}The object diagram in Fig. 8 describes the
SSD RBAC policies.

(a) (b)

RoleHierarchyRoleHierarchy

seniorsenior

accountingManager : RolecustomerServiceRep : Role

juniorjunior

accountant : Roleteller : Role

Fig. 7. Object Diagrams for Hierarchical Policies.
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SSDSSD

SSD
accountingManager : Role

SSD
accountant : Roleteller : Role

loanOfficer : Role

SSD

customerServiceRep : Role

Fig. 8. Object Diagram for SSD Policies.

DSD Policies: DSD policies prevent a user from playing a role in a session, if another
role in a DSD relation has been activated. For the banking system the following pair of
roles are in DSD relation:
{(customerServiceRep, loanOfficer)} The object diagram in Fig. 9 describes the DSD
RBAC policy.

customerServiceRep : Role

loanOfficer : Role

DSD

Fig. 9. Object Diagram for DSD Policy.

6 Identifying Conflicts in Application-Specific RBAC Policies

In this section we show how RBAC violation patterns expressed as object diagram tem-
plates can be used to identify conflicts in application-specific policies. If a violation
pattern exists in an object diagram describing an application-specific policy, then a con-
flict exists.

Fig. 10 shows object diagram templates that when instantiated produce object struc-
tures that violate RBAC constraints. Fig. 10(a) describes structures in which a user is
assigned to roles in an SSD relationship (violation of the SSD constraint). Fig. 10(b)
describes structures in which two roles in an SSD relationship have a common senior
role and structures in which a senior role is in an SSD relationship with a junior role
(both are violations of the hierarchical SSD constraint). Fig. 10(c) describes structures
in which a user in a session activates two roles that are in a DSD relationship (a vio-
lation of the DSD constraint). We illustrate how these object diagram templates can be
used to identify conflicts in application models later in this paper.
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Fig. 10. RBAC Constraints.

Fig. 11 shows the object diagram that integrates the policies shown in Fig. 7, Fig. 8,
and Fig. 9. The reader can visually check that the pattern described by object diagram
template in Fig. 10(b) does not occur in Fig. 11.

Formally, an object diagram has the violation described by a violation pattern if
there exists a binding that produces an object structure contained in the object diagram.
To illustrate how conflicts can be identified, consider the case in which the following
policy is added to the set of policies described in the previous section: “The branch man-
ager role is senior to all the other roles in the bank.” Fig. 12 shows the result of including
this policy in the banking application’s policy set. A number of occurrences of the pat-
tern described in Fig. 10(b) can be found in Fig. 12. For example, if we assign a user to
the branch manager role, the user is also assigned to the roles customerServiceRep and
accountingManager through inheritance. However, the roles customerServiceRep and
accountingManager are in an SSD relation.
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Fig. 11. Combined Object Diagram.
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Fig. 12. Violation Pattern Occurrence: Hierarchical SSD.

7 Related Work

Tidswell and Jaeger [21] propose an approach to visualizing access control constraints.
They point out the need for visualizing constraints and the limitations of previous work
on expressing constraints. A drawback of their work is that they created a new notation
for specifying constraints and it is not clear how the new notation can be integrated
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with other widely-used design notations. The approach described in this paper utilizes
a popular standardized modeling language (the UML) and also integrates the policy
specification activity with UML design modeling activities.

A large volume of research (e.g., see [2–4, 6, 7, 11, 12, 14] exists in the area of ac-
cess control policy specification. Formal logic-based techniques (e.g., see [2–4, 6, 11,
14]) are often used to specify security policies. The use of mathematical concepts and
notation that are not familiar to software developers makes them difficult to use and un-
derstand. Other researchers have used high-level languages to specify policies [12, 13,
19, 20]. Although high-level languages are easier to understand than formal logic-based
approaches, they are not analyzable.

Some work has been done on modeling system security using UML. Jurjens [15]
proposes UMLsec, a UML profile for modeling and evaluating security aspects based
on the multi-level security model. Lodderstedt et al. propose SecureUML [17], an ex-
tension of the UML that defines security concepts based on RBAC. These approaches
mainly focus on extending the UML notation to better reflect security concerns. The
approach described in this paper tackles the complementary task of capturing RBAC
policies in patterns that can be reused by developers of secure systems.

8 Conclusion

The work described in this paper focuses on specifying only the static structure of
RBAC. A complete RBAC model should also include descriptions of the patterns of
behavior supported by RBAC. In previous work (e.g., see [9, 16]) we developed tem-
plate forms of interaction diagrams that can be used to specify interaction patterns.
The interaction patterns can be used to characterize families of allowed and prohibited
behaviors. We are also developing template forms of other UML behavioral models.

The use of violation patterns to identify policy conflicts, while useful, has its lim-
itations. Checking for the presence of a pattern in an object diagram specifying a set
of policies is essentially a search for a subgraph in an object diagram, which is known
as subgraph isomorphism problem. Detecting subgraph isomorphism can be a difficult
task [18]. Our work in this area focuses on identifying alogorithms to support practical
application of this technique.

Validation of the method is needed. To support planned validation activities we are
developing a tool set that allows developers to create and instantiate UML diagram
templates, and to compose template instantiations with UML design models.
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Abstract. Web Services offer a widespread standard for making ser-
vices available on the Internet. Of particular interest is the possibility
of composing existing distributed services to create new complex ones.
Existing research has already studied long running transactions within
a formal context. In this other research, compensations are just partly
compositional: a transaction’s failure triggers the compensation of im-
mediately enclosed transactions, but not those of nested transactions. In
this paper we formally model a more compositional protocol with the
asynchronous pi calculus. The resulting behavior is similar to that of the
Business Transaction Protocol of OASIS [1], which also has arbitrary
nesting.

1 Introduction

Web Services offer a widespread standard for making services available on the
Internet, not just to humans but also to other services. Of particular interest is
the possibility of composing existing distributed services, perhaps from differ-
ent companies, to create a new complex service. In this sense each service is a
peer that can behave both as a client and as a service provider. Current work,
under the general heading ‘Choreography’, attempts to standardise this possi-
bility of nested composition. Some examples of proposed standards are BPML
by bpmi.org [2], XLANG by Microsoft [3], WSFL by IBM [4] and BPEL4WS
by a consortium [5]. The W3C Choreography Group is currently working on the
Recommendation for Web Services Choreography (a draft has been public since
August 2003 [6]).

Within this context, where the parts are loosely coupled and not always
trusted, standard ACID transactions (with properties of Atomicity, Consistency,
Isolation, Durability) are too strict. This is especially a problem in business
transactions: for instance, some ‘pay-employee’ transaction must be executed
promptly at the start of the month, even if other necessary sub-transactions have
not yet finished. The payment might subsequently be undone, ‘compensated’, if
it turned out premature. The cycle of perform-then-maybe-compensate is one
characteristic of loosely-coupled long-running transactions. Long running trans-
actions have been introduced in ‘data processing applications’ [7,8], where they

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 194–208, 2004.
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were called Sagas. Then Web Services led to a renewed interest in long running
transactions that are supported, in a mainly local perspective, by already men-
tioned languages (WSFL, XLANG and BPEL). Other contributions arise in the
context of Web transaction protocols, where loosely coupled Web services are
coordinated as autonomous entities by means of a defined set of transaction mes-
sages. We mention the W3C Tentative Hold Protocol (THP) [9], OASIS BTP [1]
and WS-Transactions [10] by BEA, IBM and Microsoft.

There is general agreement on the importance of such weaker transactions,
but not yet an agreement on their exact meaning. In this paper we choose one
particular form of weak transactions, express it in the pi calculus, and prove
formally its correctness. In particular, correctness refers to deadlock absence
(Eventuality), Durability and partial Atomicity. There is no global Atomicity in
the whole set of transactions, but if a transaction fails then all its sub-transaction
fail. We will discuss more later.

1.1 Related Works

Long running transactions have been described within several formal contexts.
As regards XLANG (used in the product Microsoft BizTalk), its transactional
behavior is informally described in [11], and then implemented in the Join calcu-
lus. In [12] the transactional behavior is formally specified at high level, and then
implemented in the asynchronous pi calculus. In these other works, compensa-
tions are just partly compositional: a transaction’s failure triggers the compen-
sation of the enclosed transactions, but not those of nested transactions. It is
possible to encode the effect of nested triggers, basically though copying a child’s
compensation code into the parent. But this is no longer compositional, and is
clearly inappropriate in a Web Service context where nested transactions might
belong to different (untrusted) companies. The need for compositional nested
transactions is stressed in the current W3C draft of standards for Choreography
and Coordination [6,10]. The transactions that we encode are compositional: a
failure is able to trigger all the compensations of all its nested transactions.

The issue of the paper is describing Web transaction protocols, which are
based upon message exchange in a distributed setting. We do this with the pi
calculus – it is a message-based formalism, and seems natural for representing
distributed protocols in the sense that it is easy to obtain a straightforward im-
plementation. An alternative would be to use formalisms that express properties
as predicates between states, such as TLA [14] or ACTA [13] (a first-order logic-
based formalism for describing transactional models). These may possibly lead
to a more elegant representation than using the pi calculus, but would probably
no longer be as close to an implementation.

1.2 Structure of the Paper

Section 2 provides a minimal background on the pi calculus and introduces basics
on the described transaction behavior. Section 3 presents an implementation
of transaction managers with the asynchronous pi calculus. Section 4 formally
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defines some properties, i.e. Durability, Eventuality and Local Atomicity that are
then proved for the given implementation. Section 5 contains some conclusive
remarks.

2 Preliminaries

We will specify the BTP in the pi calculus. What follows is a brief introduction
on the pi calculus, for a full reference see [15].

The asynchronous pi calculus assumes distributed entities called processes
which exchange messages over channels, named u, v, . . . , z. The content of a
message is also a channel name. A process can send a message z along a channel
u with the non-blocking output action u z. A process can also receive a message
on channel u with the blocking input action u(v).P . The parallel execution of
two processes P and Q can be expressed as P | Q. Parallel processes can com-
municate by performing an input and an output action on the same channel;
for example the process u z | u(v).P will perform an input and an output along
channel u. Communication is described by the reaction u z | u(v).P τ−→ P{z/v}.
Its effects are visible to the receiver as name substitution of the actual parameter
z for the formal parameter v. The continuation P of the input process can be
executed after the input on u has been received. In the polyadic pi calculus a
message is a string of names ṽ instead of a single name v. The process νu.P
declare a local variable u with scope P . It is also possible to define a process
that replicates itself: !P is able to create an arbitrary number of copies of P .
The pi calculus is summarized in Table 1: labelled transitions define the possible
reactions of a process, contexts C are processes with holes filled by other pro-
cesses, and represent environments. Simulation is a relation characterizing when
two processes have the same behavior.

The general behavior of the protocol we propose is similar to that of the
Business Transaction Protocol of OASIS. The expressed relation between trans-
action and the arbitrary nesting is also present in Business Activities (BA) of
WS-Transactions.

A two phase commit protocol is used first to assemble the ‘votes’ of nested
transactions (ie. whether or not they succeeded), and second to inform them all
of the consensus decision. Additional features are provided for controlling which
compensations are to be executed. We illustrate the features in Fig.1. where
a holiday booking might succeed even if some sub-transactions (e.g. car rental)
have failed; where, moreover, some sub-transactions (e.g. an Alitalia flight) might
be cancelled even though the overall booking succeeds. The terminology used
in [1] is that a cohesor needs only some of its children to succeed, while an
atom requires them all to succeed. Cohesors are modelled here as entities able
to flexibly specify the relation with their children. Atoms are a particular case
of cohesor. We in fact consider a partition of all nested transactions into two
groups: we require success from all of one necessary group, and we do not care
about success of the other group. A transaction will report success only if all of
its necessary children have succeeded. If a transaction fails then its sub transac-



www.manaraa.com

Compositional Nested Long Running Transactions 197

Table 1. The asynchronous pi calculus

Terms P and contexts C in the asynchronous pi calculus are as follows. In u(x̃) the
names x̃ are bound, as is x in νx.P . We identify terms up to alpha-renaming of bound
names.

P ::= 0
∣∣ u x̃

∣∣ u(x̃).P
∣∣ P |P ∣∣ νx.P

∣∣ !P

C ::=
∣∣ u(x̃).C

∣∣ P |C ∣∣ C|P ∣∣ νx.C
∣∣ !C

Labelled transitions are as follows, where labels μ range over u(x̃), νz̃.u x̃ and τ .

u x̃
u x̃−→ 0 (out) u(x̃).P

u(x̃)−→ P (in)
P |!P μ−→ P ′

!P
μ−→ P ′

(rep)

P
μ−→ P ′ x �∈ μ

νx.P
μ−→ νx.P ′

(res)
P

νz̃.u ỹ−→ P ′ x �= u, x ∈ ỹ\z̃

νx.P
νz̃x.u ỹ−→ P ′

(open)

P
μ−→ P ′ bn(μ) ∩ fn(Q) = ∅

P | Q
μ−→ P ′ | Q

(par)
P

νz̃.u ỹ−→ P ′ Q
u(x̃)−→ Q′ z̃ ∩ fn(Q) = ∅

P | Q
τ−→ νz̃.(P ′ | Q′{ỹ/x̃})

(com)

Simulation is as follows. We write τ⇒ for τ−→∗
, and

μ⇒ for τ−→∗ μ−→ τ−→∗
when μ �= τ ,

and P
μ

=⇒ for ∃P ′ : P
μ

=⇒ P ′. A symmetric relation S is a weak ground simulation if
whenever PSQ then

– P
μ−→ P ′ implies there exists Q′ such that Q

μ⇒ Q′ and P ′SQ′.

Write � for the largest ground simulation. S is a weak ground bisimulation, if both S
and S−1 are weak ground simulations. Write ≈ for the largest ground bisimulation. We
note some standard results:

P ≈ Q implies ∀C : C[P ] ≈ C[Q] νx.x().P ≈ 0

P |0 ≈ P P |Q ≈ Q|P P |(Q|R) ≈ (P |Q)|R !P ≈ P |!P
νx.νy.P ≈ νy.νx.P νx.(P |Q) ≈ P |νx.Q if x �∈ fn(P )

νx.P ≈ νx′.P{x′
/x} if x′ �∈ fn(P )

Notation. We write x̃C for an arbitrary sequence x1, . . . , xn of the elements in set C.
We also use these syntactic sugars:

x.P = x().P (empty input)

x̃.P = x1. . . . .xn.P (sequence input)

νx̃.P = νx1. . . . .νxn.P (sequence restriction)

P ⊕ Q = νc.(c |c.P |c.Q), c fresh (nondeterministic choice)

x[P, Q] = νu, v.(x u, v|u.P |v.Q), u, v fresh (selection)

x left = x(u, v).u

x right = x(u, v).v
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Fig. 1. A prototypical set of nested transactions. Each box represents a transactional
web service, provided by different companies. There are several possible modes of failure
propagation: up-propagation, where if Alitalia and Meridiana fail then we abort the car
and the overall booking fails; non-propagation, where even if the car fails we can still
proceed with the others; down-specific-propagation, where if one of Alitalia or Meridiana
succeed then the other should be aborted; down-propagation, where the booking (the
current job) is told to abort by some higher-up agent (not pictured) and so must abort
all its children; spontaneous-failure, where the booking itself might decide to fail and
so must abort its children.

tions fail (partial atomicity). If a transaction succeeds we also consider a second
partition of the nested transactions: we will accept the success of the first group,
and will abort the others. For instance, Fig.1. uses the following subsets:

If all in this subset succeeded... then accept these... and undo these
{Alitalia} {Alitalia,car} {Meridiana}
{Meridiana} {Meridiana, car} {Alitalia}

To simplify matters, the work in this paper considers only a single row of the
table (ie. one necessary/unnecessary partition and one accept/reject partition),
rather than multiple rows in each protocol specification. To handle multiple rows,
something like Join patterns [16] might be used.

3 Design of Transaction Managers

In this section we implement (nested) transactions and their compensation-
triggering. We implement them in the asynchronous pi calculus, using a general-
ization of the two phase commit implementation given by Berger and Honda [17].

We assume a set I of transactions ranged over by i. The tree-like hierarchy
of these transactions is denoted by a relation par : I �→ I which indicates
the immediate parent of a transaction; writing parn(i) for n applications of
the pair function, we assume that if i = parm(j) then do not exists n such
that j = parn(i). Define the set of i’s children C(i) = {j : par(j) = i}. As
discussed in the introduction, we consider only a single ‘necessary’ partition of
C(i) into N(i), U(i) – with the meaning that success of all N(i) is necessary
for i to succeed, while U(i) are unnecessary. We therefore consider just a single
consequent partition of C(i) into A(i), R(i) – where all of A(i) are accepted,
while all of R(i) are rejected (undone).
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We now describe the operation of each transaction block. We illustrate with
transaction i, which has children c̃.

vsi

msiai

(1) (5)

(2)

(3) (4)

vc dc

vi

oki

faili

di

mc

(1) This transaction i itself makes a non-deterministic ‘self’ vote vsi. Also, all
of the children c make their votes vc. All these votes are made using left/right
notation (Table 1). (2) Each vote is transformed into an ‘internal message’ m.
The purpose of this translation is to separate necessary child votes N(i) from
unnecessary votes U(i). Each internal message mc means that the child either
voted success (left), or it was unnecessary. But if a child should vote failure (right)
and was necessary, it will make an ‘abort’ signal ai instead. (3) If all internal
messages msi/mc arrive, then the transaction i as a whole can succeed, and so
indicates success (left) to its parent over the channel vi. But if even one abort
message ai was received, then the transaction as a whole fails, and so it indicates
failure (right). (4) Eventually the parent p will know whether to accept i, or to
abort/undo it. This decision is communicated to i via the ‘decision’ channel di,
and so determines i’s final state. The transaction i can indicate its final state via
the messages oki/aborti. (5) Finally, the decision is propagated down to all the
children c. The accepted children, those in A(i), will be told the same decision
as i received. The rejected children, those in R(i), will be told to abort/undo
regardless. The code Ti for transaction i plus all its descendants, is as follows.

Ti = νai, msi, vsi, m̃C(i), ṽC(i), d̃C(i). (transaction)

(Ti.sv | Ti.m | Ti.col |
∏

c∈C(i)

Tc)

Ti.sv = vs ileft⊕ vs iright (self-vote)

Ti.m = vsi[ms i, a i] |
∏

c∈N(i)

vc[m c, a i] |
∏

c∈U(i)

vc[m c,m c] (internals)

Ti.col = ai.(v iright | Ti.fail) (collate votes)
| m̃C(i).msi.(v ileft | di[Ti.ok, Ti.fail])

Ti.ok = ok i |
∏

c∈A(i)

d cleft|
∏

c∈R(i)

d cright (ok)

Ti.fail = abort i |
∏

c∈C(i)

d cright (fail)
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To explain the code, the transaction Ti consists of three parts: Ti.sv generates
its self-vote, Ti.m fulfills step (2) by converting votes into internal messages, and
Ti.col collates votes and receives the final decision, for steps (3–5). We have also
included all the children transactions Tc, since they refer to the local channels
ṽC(i) and d̃C(i).

The self-vote Ti.sv makes a non-deterministic choice (using ⊕) to become, at
runtime, a vote for success or failure.

The internals Ti.m convert all the votes into internal messages according to
whether the vote came from a needed component N(i) or an unnecessary one
U(i). We count the self-vote as necessary. An internal message mc is generated
if the child c voted success, or if the child c was unnecessary. An internal abort
message ai is generated otherwise (i.e. a necessary child voted for failure).

The collator Ti.col will either receive all the internal messages mc/msi, or
will receive at least one internal abort ai. The abort signifies that a necessary
part failed. If this happens, then the component i signals a failure to its parent on
channel vi, and proceeds with Ti.fail to tell abort its children. But if all internal
messages were received, then it tells its parent about its success, and awaits the
parent’s final verdict.

The ok/fail processes Ti.ok and Ti.fail indicate the final state of this transac-
tion, using the global channels ok i and abort i. In the case of OK, the accepted
children A(i) are told of the positive verdict, while the rejected children R(i) are
told to fail. In the case of FAIL, all children are told to fail.

Let us recall the five modes of propagation identified in Fig.1. and explain
how they are reflected in the code. Let us denote the Alitalia transaction with ia,
Meridiana with im, car rental with ic and travel booking with i. As an example
we consider the following row:

If all in this subset succeeded... then accept these... and undo these
{Alitalia} {Alitalia,car} {Meridiana}

Up-propagation is achieved by enclosing ia in the set N(i) so that if Ti.m receives
the failure vote v ia

it eventually fails. It fails by sending a message a i that
unblocks the abort branch of Ti.col. Non-proragation is achieved by enclosing
ic in the set U(i) so that Ti.m reacts to both success and failure messages m ic .
Down-specific proragation is achieved by enclosing im in the set R(i) so that
Ti.ok communicates, in any case, a failure decision to im. Down proragation is
implemented by the message d i that in case of local success of i notifies the
upper outcome.

Finally, we collect the overall tree of transactions in a test harness H. We
suppose the root of the tree is transaction i:

H = νvi, di.
(
Ti | vi[d ileft, d iright]

)
.

This harness merely executes the root transaction Ti, waits for its overall vote
vi, and immediately sends back the vote as the decision if vote was success. If
vote was fail there is no need of decision communication: the child already had
its outcome without waiting any signal.
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The following lemma describes the observable behavior a of generic transac-
tions. Ti takes a local decision on the basis of the votes of its children (if there
are any) and of its non deterministic self-vote. In any case Ti communicates its
vote to the parent. If it locally failed it terminates with failure soon. If it did
not locally fail it waits for the global decision of the parent and its final outcome
depends from it.

Lemma 1. If C(i) = ∅, then Ti ≈ (v ileft | di[ok i, abort i])⊕(v iright | abort i).

Proof sketch. When C(i) = ∅, then also N(i) = U(i) = A(i) = R(i) = ∅. Hence
Ti simplifies to just

Ti =νai, msi, vsi.( (vsi left⊕ vsi righto) | vsi[msi , ai ]

| ai.(vi right | abort i) | msi.(vi left | di[oki , abort i]) ).

Observe that the only action Ti can make is a τ move, choosing whether vsi

votes left or right. This is reflected by the right hand side.

4 Transaction Properties

In this section we prove some properties of the protocol: Durability, Eventuality
and Local Atomicity. Durability means that each node reaches no more than
one outcome and, in general, that the only observable behavior of the protocol
is the set of outcome notifications. Eventuality implies the absence of deadlock
in the protocol: an outcome is achieved in every node of the tree. Finally we
consider Local Atomicity. Normally, atomicity is the property that either every
transaction succeeds or every transaction fails. We have seen that this is too strict
for business transactions. Instead, local atomicity is just the property that if one
transaction fails, then all its children fail. Let us start by defining a transaction’s
descendants set.

Definition 2 (Descendants). Define D(i) = {j : ∃n.i = parn(j)}.
The precise pattern of the ‘mountains’ (Fig.2.) is determined by the compile-time
choice of which failures propagate, ie. by the partitions of D(i), N(i)/U(i) and
A(i)/R(i), and also by the run-time non-deterministic self-vote made by each
transaction. We start with the proposition that, after the transaction has finished
executing, it ends up in a state where every node has made a single choice (either
ok i or abort i), such that the set of all nodes respects local atomicity.

Before starting the lemmas we remark upon conventions. Recall the syntactic
sugar for selection (Table 1):

x[P, Q] = νu, v.(x u, v | u.P | v.Q), with u, v fresh (selection)

x left = x(u, v).u

x right = x(u, v).v
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Fig. 2. Local atomicity may be pictured as ‘mountains’, where the shaded mountains
represents those nodes, in the transactions tree, that have failed.

We will use shorthand labels x(left), x(right), x left, x right, with the following
transitions:

x[P, Q]
x(left)
=⇒ P x[P, Q]

x(right)
=⇒ Q

x left
x left
=⇒ 0 x right

x right
=⇒ 0

P
x left
=⇒ P ′ Q

x(left)
=⇒ Q′

P | Q
τ=⇒ P ′ | Q′

P
x right
=⇒ P ′ Q

x(right)
=⇒ Q′

P | Q
τ=⇒ P ′ | Q′

and also equivalent versions of (res) and (par). These rules are satisfactory
abstractions of the actual selection transitions, so long as the process in ques-
tion only ever uses selection channels appropriately (e.g. there is no x[P, Q] |
x(u, v).(u | v )). In some cases we want to refer to generic actions, i.e. votes
and decisions, indifferently from their specific types: v i stands for a generic vote
from i (v ileft or v iright arbitrarily), d i stands for an arbitrary decision (d ileft
or d iright). We will also refer to generic outcome notifications (abort i or ok i)
with ouctome i.

Durability

We now prove durability: the observable behavior is never anything other than a
single outcome notification (ok i/abort i) for each node. The property is proved
in Theorem 5; we present some auxiliary lemmas first.

Lemma 3.

1. νai, msi, m̃C(i).(Ti.m | ai.P | m̃C(i).msi.Q) � vsi[0, 0] |
P ⊕Q | ∏c∈C(i) vc[0, 0].

2. P ⊕ di[Q, P ] � P ⊕ (di[0, 0] | P ⊕Q).
3. (P1 | P2)⊕ (Q1 | Q2) � (P1 ⊕Q1) | (P2 ⊕Q2).
4. P1 ⊕ P2 ≈ P1 ⊕ (P2 ⊕ P1).

Proposition 4. νvi, di.Ti �
∏

j∈D(i)(abort j ⊕ ok j).

Proof. By induction on the depth of the tree.
Base Case. C(i) = ∅. By Lemma 1, Ti ≈ (v ileft|di[ok i, abort i]) ⊕ (v iright|
abort i). Applying now Lemma 3 (case 2, 1 and 3) to the right hand term

Ti � (ok i ⊕ abort i) | (v ileft⊕ v ileft) | di[0, 0].

Trivially νvi, di.Ti � (abort i ⊕ ok i).
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Inductive Case. let us consider a generic node Ti. We have for inductive hy-
pothesis that ∀c ∈ C(i), νvc, dc.Tc �

∏
j∈D(c)(abort j⊕ok j). It is straightforward

that

νṽC(i), d̃C(i).
∏

c∈C(i)

Tc � A where A =
∏

c∈C(i)

∏
j∈D(c)

(abort j ⊕ ok j).

By the standard results properties of ≈ (Table 1) we have the following:

Ti ≈ νvsi, ṽC(i), d̃C(i).(
∏

c∈C(i)

Tc | Ti.sv | νai, msi, m̃C(i).(Ti.m | Ti.col))

� νvsi, ṽC(i), d̃C(i).(A | Ti.sv | vsi[0, 0] |
∏

c∈C(i)

vc[0, 0] | P ⊕Q)

(Lemma 3.1)

� νd̃C(i).((P ⊕Q) | νṽC(i).(
∏

c∈C(i)

vc[0, 0]) | νvsi.(vsi[0, 0] | Ti.sv) | A.

(structural)

Trivially νvsi.(vsi[0, 0] | Ti.sv) ≈ 0 and νṽC(i).(
∏

c∈C(i) vc[0, 0]) ≈ 0 so

Ti � νd̃C(i).((P ⊕Q) | A)

where P = v iright | Ti.fail and Q = v ileft|di[Ti.ok, Ti.fail]). By Lemma 3.2,

Ti � νd̃C(i).((Ti.fail⊕ di[Ti.ok, Ti.fail]) | (v iright⊕ v ileft) | A)

≈νd̃C(i).((Ti.fail⊕ (di[0, 0] | (Ti.ok⊕ Ti.fail))) | (v iright⊕ v ileft) | A)

(Lemma 3.1)

≈νd̃C(i).((abort i ⊕ (ok i ⊕ abort i)) | R | di[0, 0] | (v iright⊕ v ileft) | A)

(Lemma 3.2)

where R is obtained extracting the decision propagation from Ti.ok and Ti.fail

R =
∏

c∈C(i)

d cright⊕ ((
∏

c∈A(i)

d cleft |
∏

c∈R(i)

d cright)⊕
∏

c∈C(i)

d cright).

≈ (abort i ⊕ (ok i ⊕ abort i)) | d̃C(i).R | di[0, 0] | (v iright⊕ v ileft) | A
(structural)

≈ (abort i ⊕ (ok i ⊕ abort i)) | di[0, 0] | (v iright⊕ v ileft) | A
(structural)

� (abort i ⊕ ok i) | di[0, 0] | (v iright⊕ v ileft) | A.

(Lemma 3.3)
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Note that νvi.(v iright⊕ v ileft) ≈ 0 and νdi.di[0, 0] ≈ 0, so (structural)

νvi, diTi �
∏

j∈D(i)

(abort j ⊕ ok j).

Corollary 5 (Durability). H �
∏

i∈I(abort j ⊕ ok j).

Eventuality

We prove that any node of the tree can always notify an outcome (none of the
nodes deadlocks). Lemma 6 proves that each transaction can eventually vote for
each possible computation. Lemma 7 provides that, depending on the vote of a
node, we can always get a decision from the parent that unblocks one of the final
processes Ti.ok or Ti.fail. Then we prove (Lemma 8) that if a node votes and its
provided with a decision then it and all the subtree is able to have an outcome.
This leads directly to Corollary 9 that deals with the observable behavior of H.
The following lemma is that a transaction can always eventually vote, no matter
what sequence of internal moves it has already made.

Lemma 6. If Ti
τ=⇒ T ′

i then T ′
i

v ileft
=⇒ or T ′

i
v iright
=⇒ .

Henceforth we use the shorthand z̃ = ai, msi, vsi, m̃C(i), ṽC(i), d̃C(i) to refer
to the scope of a node Ti.

Lemma 7.

1. If Ti
v ileft
=⇒ T ′

i then T ′
i

di(left)
=⇒ νz̃.(Ti.ok | P ) for some P and T ′

i
diright
=⇒

νz̃.(Ti.fail | Q) for some Q,

2. If Ti
v ileft
=⇒ T ′

i then T ′
i

τ=⇒ νz̃.(Ti.fail | P ) for some P .

Proof sketch. 1. If Ti was able to perform a v ileft transition it has previously
unblocked the successful branch of Ti.col that is v ileft | di[Ti.ok, Ti.fail].
After the v ileft transition it will become

νz̃.(ai.(v iright | Ti.fail) | di[Ti.ok, Ti.fail] |
∏

c∈C(i)

T ′
c).

The only possible transitions are the following:

di(left)−→ νz̃.(ai.(v iright | Ti.fail) | Ti.ok |
∏

c∈C(i)

T ′
c), or

di(right)−→ νz̃.(ai.(v iright | Ti.fail) | Ti.fail |
∏

c∈C(i)

T ′
c).
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2. If Ti is able to perform a v̄iright action it has already triggered the failing
action of Ti.com. After sending the output v̄iright the process of the node i
is as follows:

νz̃.(Ti.fail | m̃C .msi.(v ileft | di[Ti.ok, Ti.fail]) |
∏

c∈C(i)

T ′
c).

Note: by hypothesis, only τ moves have been performed hence Ti.fail has not
reacted.

Lemma 8. If T ′
i : Ti

v ileft
=⇒ T ′

i or Ti
v iright
=⇒ T ′

i then for every j ∈ {i}∪D(i), we

have T ′
i | d i

ok j=⇒ or T ′
i | d i

abort j=⇒ .

Proof. Let us reason by induction on the depth of the level of i.
Base Case. C(i) = ∅. By Lemma 6, Ti

v i−→ T ′
i . Thus by Lemma 7 T ′

i |
d i

outcome i=⇒ .
Inductive Case. By Lemma 6 we have Ti

v i−→ T ′
i . By Lemma 7 we have

T ′
i | d i

τ=⇒ νz̃.(Ti.ok | P ) for some P or T ′
i | d i

τ=⇒ νz̃.(Ti.fail | P ) for
some P . Recall the definition of Ti.ok and Ti.abort:

Ti.ok = ok i |
∏

c∈A(i)

d cleft |
∏

c∈R(i)

d cright

Ti.fail = abort i |
∏

c∈C(i)

d cright

In both cases it is possible, from νz̃.(Ti.ok | P ), to perform the following actions:

– d c−→ such that by inductive hypothesis ∀j ∈ D(c) ∪ {c}, T ′
c | d c

outcome j=⇒ ,

– outcome i−→ .

It holds so that for any T ′
i such that Ti

v i=⇒ T ′
i then for every j ∈ {i} ∪ D(i),

T ′
i | d i

outcome j=⇒ .

Corollary 9 (Eventuality). For every H ′ such that H
τ=⇒ H ′ then, for every

j ∈ I, where H ′ ok i=⇒ or H ′ abort i=⇒ .

Local Atomicity

To prove Local Atomicity we simplify (Lemma 10) the behavior of Ti by consid-
ering its state after the it voted. Recall that by Lemma 6, each node eventually
votes. Then we show (Lemma 11) that if a node i receives a failure decision or
votes failure itself then none of the nodes in the subtree of i will ever notify
a successful outcome. Finally we show that any node abort just if it received a
failure notification or votes failure itself and generalize the property to the whole
protocol H.
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Lemma 10.

1. If Ti
v ileft
=⇒ T ′

i then T ′
i ≈ νd̃C(i).(di[Ti.ok, Ti.fail] |

∏
c∈C(i) T ′

c) with Tc
v c=⇒ T ′

c.

2. If Ti
v iright
=⇒ T ′

i then T ′
i ≈ νd̃C(i).(Ti.fail |

∏
c∈C(i) T ′

c) with Tc
v c=⇒ T ′

c or
Tc ⇒ T ′

c.

Lemma 11.

1. If Ti
v ileft
=⇒ T ′

i then �j ∈ {i} ∪D(i) such that T ′
i | d iright

ok j=⇒,

2. if Ti
v iright
=⇒ T ′

i then �j ∈ {i} ∪D(i) such that T ′
i

ok j=⇒.

Proof. For induction on the depth of the tree.
Base Case. the tree is composed by node Ti with C(i) = ∅. From Lemma 1
Ti ≈ Tsi with Tsi = (v ileft|di[ok i, abort i]) ⊕ (v iright|abort i). The only step
that Tsi can perform is a τ action corresponding to the choice of one of the two
branches.

1. If the left branch is chose then the only possible sequence of steps is: Tsi
τ−→

v ileft|di[ok i, abort i]
v ileft
=⇒ di[ok i, abort i]. Hence di[ok i, abort i] | d iright

τ=⇒ abort i
abort i=⇒ .

2. If the right branch is chose then the only possible sequence of steps is: Tsi
τ−→

v iright|abort i
v iright
=⇒ abort i

abort i=⇒ .

Inductive Case. we have that Ti
v i=⇒ T ′

i . Depending on the vote type we have
two cases:

1. If Ti
v ileft
=⇒ T ′

i then by Lemma 10 T ′
i ≈ νd̃C(i).(di[Ti.ok, Ti.fail] | ∏c∈C(i) T ′

c).
Hence

νdi.(T ′
i | d iright) ≈ Ti.fail |

∏
c∈C(i)

T ′
c).

Here i will surely fail (and just fail for durability (Theorem 5)) and will also
provide a d cright decision ∀c ∈ C(i) that for inductive hypothesis grant that

�j ∈ {c} ∪D(c) such that T ′
c | d iright

ok j=⇒.
2. If Ti

v iright
=⇒ T ′

i then for Lemma 10 T ′
i ≈ νd̃C(i).(Ti.fail | ∏c∈C(i)). The case

is analogue to the previous one here.

Theorem 12 (Local Atomicity). If H
abort i=⇒ H ′ then �j ∈ D(i) such that

H ′ ok j=⇒.

Proof. If H
abort i=⇒ H ′ then i must have failed for one of the following reasons:

– i voted v̄iright, the result follows from Lemma 11.2,
– i voted v̄ileft and received a failure decision from the parent d̄iright. The

result follows from Lemma 11.1.
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5 Conclusions

We discussed a possible behavior for long running transactions in a context of
hierarchical relations with other transactions, represented by an arbitrarily deep
tree. The exercise had the aim to clarify two principal aspects.

The first is the role of cohesors and atoms in the protocol, their behavior
and their relation. We proposed a flexible approach for describing the relation
between votes of a sub-transaction and parent outcome type, and again between
parent outcome and children outcome. Atoms can be modelled here as particular
cases of cohesors. This flexible behavior is present in also in BTP and WS-
Transactions. The paper provides an implementation with the pi calculus.

The second aspect discussed in this paper is the mechanism of compensation
triggering. Compensations are a straightforward addition to the current work:
each failure notification aborti is associated to the execution of the compensa-
tion of transaction i. Transactions are thought as independent entities, maybe
from different companies, connected by a superior-inferior (caller-provider) links.
Those links create a hierarchical structure of arbitrary depth. Our mechanism
coordinates the triggering of compensations: when a node i fails the protocol
creates the global compensation process by composing the local compensations
of all the nodes in the subtree of i.

We proved that each transaction has no more than one outcome (Durability)
and that the protocol does not deadlock (Eventuality). We also proved that if
one node fails then its entire subtree will also fail (Local Atomicity).

Other aspects have yet to be considered. It would be desirable to allow an
explicit representation of the choice of sets N(i), A(i), U(i), R(i) at run time, ac-
cording to the computation feedback. This aspect is indirectly managed (it could
be simulated with Join patterns). Other aspects are the introduction of concepts
like localities and unreliability in communication between remote transactions.
Managing these would probably lead to the introduction of timers in order to
avoid deadlock pathologies.
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Abstract. The Internet provides possibilities for distributed execution
of business processes and Web Services. This caused the emergence of a
variety of Web Services that might be composed to accomplish tasks. To
efficiently compose these tasks a simple workflow description no longer
suffices. We therefore suggest a description based on high-level Petri
nets called reference nets, allowing for the consideration of pre- and
post-conditions of services offered on the Internet. We demonstrate how
DAML-S models can be automatically translated into high-level nets and
thus can be directly executed in such contexts, including Petri net based
MAS.

Keywords: high-level Petri nets, nets within nets, reference nets, Re-
new, workflow, web service, business process, DAML-S, process ontology

1 Introduction

The modelling of workflows and processes with Petri nets has been thoroughly
investigated (see [2, 16, 1]). Petri nets offer a clear semantics and a rather intu-
itive way to process modelling. This makes them both easy to handle for humans
and unambiguously processable by machines. Based on Renew1 (Reference Net
Workshop, see [13]), a Petri net simulator, written in Java, several approaches
for the modelling of workflows with Petri nets have been made (see [7, 16]).
We adopt those approaches and transfer them to the area of Web Services. The
composition of Web Services is strongly related to the modelling of workflows.

Renew allows for the execution of Java code and is therefore capable of not
only graphically describing a composition of Web Services but also of executing
the described composition. Since process descriptions in DAML-S use XML,
they are hard to read without support. Additionally DAML-S allows for concept
hierarchies, so that a sub-concept might inherit properties from a super-concept.
This makes it rather difficult to grasp the meaning of a DAML-S description.
Based on Renew, we developed a tool to read DAML-S descriptions, show them
as Petri net (reference net) and execute them from within the Renew simulator,
following the ideas introduced in [14], that showed that DAML-S descriptions
can be modelled as Petri nets.
1 Renew is freely available from http://www.renew.de/

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 209–213, 2004.
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2 Conceptual Background

This tool heavily relies upon the Renew simulator. Renew is a Petri net sim-
ulator that allows for the graphical drawing and for the execution of reference
nets (see [9, 12, 11, 10]). Reference nets represent an extension of the Coloured
Petri net (CPN) formalism (see [8]) adding both the concept of nets within nets
introduced by [15] and the concept of synchronous channels (see [5]). Addition-
ally they provide means to execute Java code directly from within the Petri net
through inscriptions on net elements. Furthermore, Renew has a plug-in mech-
anism, so that it can easily be extended by new functionality. Furthermore new
net classes can be created, loaded as net instances and can therefore be executed.

Having started the Renew-application, two windows appear: a toolbar win-
dow and a drawing window. The former allows to pick a drawing tool which
can than be used in the latter window. By picking places, transitions, arcs and
inscriptions, the user can easily draw a Petri net. These Petri nets can than be
executed, which will then be displayed in an extra window, so that the user can
follow the execution of the net. Figure 1 shows the Renew-simulator with both
windows mentioned above. Here a synchronous channel and execution of Java
code (via the action inscription) is modelled. Via synchronous channels different
net instances can communicate.

The Renew simulator fully supports the execution of reference nets. action
inscriptions make the simulator execute the Java code following the action
keyword. This way arbitrary code can be executed.

DAML-S2 is a based on DAML+OIL3 and provides the framework for a
process ontology to describe Web Services. Just like DAML+OIL, DAML-S is
closely related to description logics. It therefore allows for the discovery of Web
Services through inference. A general category of Web Services can be investi-
gated and the services best suited for a given task can be picked. Besides this
categorisation of Web Services, DAMLS-S also provides information about the
input and the output parameters as well as the preconditions and the effects of
a service (IOPE).

3 Tool

The tool introduced here is a plug-in for Renew. It allows to read a DAML-
S description, which will than be displayed as a set of Petri nets. The Petri
nets generated allow different views on the process, such as the control flow,
the data and the operations. These views were partly adopted from the views
on workflows discussed in [3]. The different nets, that have been generated can
be executed by the simulator. To exchange data, they communicate with each
other through synchronous channels. In order to get a quick overview, the user is
able to merely look at the control flow of a process and in order to get a deeper
insight it is possible to consider each process separately along with its IOPE.
2 http://www.daml.org/services/
3 http://www.daml.org/language/
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Fig. 1. Renew

The Petri nets of a process description are assembled through templates.
These templates specify the basic net layouts of the control constructs allowed in
DAML-S and they contain the templates for atomic and for composite processes.
These templates are placed in the order given by the process description.

To load a DAML-S description one can simply pick the file the service de-
scription is located in. If there is only one service description in this file, this
description will be opened. If there are several such descriptions, the user can
pick the one he or she wants to open.

4 Current Use

Within our Petri net based FIPA4 compliant multi-agent framework Capa (see
[6]), this tool can as well be used to have agents invoke Web Services dynamically.
This way we have enabled a FIPA compliant multi-agent platform to interact
with Web Services. Through an integration of Capa into the Agentcities.net
framework we plan to offer these services to a broader community.
4 http://www.fipa.org
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Apart from them we are currently investigating in how far Web Services can
be modelled through workflow techniques. Through this tool, workflows using
Web Services can be executed without any need of other tools.

5 Conclusion and Outlook

We use a special kind of high-level Petri nets – reference nets – as the basic
description technique and formalism for processes and workflows. The technical
implementation is directly possible with the Renew-tool. Our integration into
the agent domain as an open framework results by adding our FIPA-compliant
extension Capa.

As the major contribution here we see the visualisation of DAML-S process
descriptions as well as their execution and their integration into a FIPA compli-
ant multi-agent system. Furthermore we see reference nets as a major modelling
technique for processes. They have a formal semantics, their modelling is sup-
ported by a tool – Renew – and they have successfully been applied to a wide
range of different fields.

What is missing now is the direction from reference nets which have been
modeled directly or which have been derived from other models (e.g. from UML
or AUML interaction diagrams (see [4])) to DAML-S descriptions. Apart from
that it would be of great interest to verify certain properties of the nets generated
or of those to be exported as DAML-S.

Another challenge would be the integration of ontology tools to support the
development of process ontologies in DAML-S as well as the development of
static ontologies in DAML+OIL. Here an integration of tools like Protege5 or
OilEd6 is envisioned.

In the context of Petri nets workflow patterns need to be integrated into nets
simplifying the creation of workflows. Here some approaches exist within the
scope of agent protocols (see [4]).
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Abstract. Visual languages (VLs) play a central role in modelling various sys-
tem aspects. Besides standard languages like UML, a variety of domain-specific
languages exist which are the more used the more tool support is available for
them. Different kinds of generators have been developed which produce visual
modelling environments based on VL specifications. To define a VL, declarative
as well as constructive approaches are used. The meta modelling approach is a
declarative one where classes of symbols and relations are defined and associated
to each other. Constraints describe additional language properties. Defining a VL
by a graph grammar, the constructive way is followed where graphs describe the
abstract syntax of models and graph rules formulate the language grammar.
In this paper, we extend algebraic graph grammars by a node type inheritance
concept which opens up the possibility to integrate both approaches by identi-
fying symbol classes with node types and associations with edge types of some
graph class. In this way, declarative as well as constructive elements may be used
for language definition and model manipulation. Two concrete approaches, the
GENGED and the AToM3 approach, illustrate how VLs can be defined and mod-
els can be manipulated by the techniques described above.

1 Introduction

Visual languages (VLs) play a central role in modelling various system aspects. One,
if not the main visual modelling language is the UML [19] which integrates a num-
ber of different diagram techniques, useful to describe structural as well as behavioural
aspects of object-oriented software systems. Although the UML defines a standard in
visual modelling, there are of course various further visual modelling techniques, of-
ten domain-specific and often for specific aspects. Especially for those domain-specific
solutions which are not widely known, a generator for visual modelling environments
is useful. After specifying the VL in mind, a supporting modelling environment con-
sisting of visual editors, simulators, compilers and animators is generated automatically
and does not have to be coded by hand. Thus, rapid prototyping is supported.

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 214–228, 2004.
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There are mainly two different lines to define a VL: the declarative way and the
constructive way. UML is defined by the Meta Object Facilities (MOF) approach [19]
which uses classes and associations to define symbols and relations of a VL. Within this
meta modelling approach, multiplicities and OCL constraints [23] are additionally used
to formulate desired language properties. While constraint-based formalisms provide a
declarative approach to VL definition, grammars are more constructive, i.e. closer to
the implementation. In [18] for example, textual as well as graph grammar approaches
are considered for VL definition. Due to its appealing visual form, graph grammars
can directly be used as high-level visual specification mechanism for VLs [4]. Defin-
ing the abstract syntax of visual forms as graphs, a graph grammar defines directly
the language grammar. The induced graph language determines the corresponding VL.
Visual language parsers can be immediately deduced from such a graph grammar. Fur-
thermore, abstract syntax graphs are also the starting point for model simulation and
transformation, i.e., model manipulation [5, 10, 22, 13]. Also here, it is very natural to
use graph transformation to come up with a high-level and constructive specification.

In this paper, we consider the integration of meta modelling with graph transforma-
tion. As common basis we take into account the types of visual symbols and relations
within a VL, i.e. the visual alphabet. While constraints describe additional requirements
on this alphabet, transformation rules formulate a constructive procedure. In the MOF
approach, classes of symbols can be inherited, meaning that their attribute lists and
their associations are also present at all their descendants. Considering graph transfor-
mation on the other hand, an additional type graph [8] is used to ensure a certain type
safety on nodes and edges. Supporting node type inheritance in addition, leads to a
more dense form of a graph transformation system, since similar transformation rules
can be abstracted into one. We believe this work can be very valuable for the Model
Driven Arquitecture [19] (MDA), where model transformation plays a central role. In
Section 2, we present algebraic graph transformation with node type inheritance facil-
ities and show how this kind of graph transformation can be flattened to simply typed
graph transformation.

The MOF and the graph transformation approach can be integrated by identifying
symbol classes with node types and associations with edge types. In this way, declara-
tive as well as constructive elements may be used for language definition, but it is still
open how single parts of a VL specification are defined. In Section 3, we discuss two
possible approaches, the AToM3 and the GENGED approach, which are quite different
to each other.

All new concepts are illustrated at a running example which is a variant of UML
Statecharts. We focus on the abstract syntax definition of the language as well as the
simulation of concrete state models. Last but not least, we compare our approaches to
further ones in the literature.

2 Typed Graph Transformation with Node Type Inheritance

In this section we present our new concepts of typed graph transformation with node
type inheritance. Due to the space limitations, we omitted all proofs and details. The
interested reader is asked to consult [2].
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2.1 Type and Instance Graphs

The basic idea for specifying node type hierarchies is to introduce a special kind of
(directed) edges, hierarchy edges, into type graphs. The source node of a hierarchy edge
is said to be a sub-type of the target node, which is called the former one’s super-type.
Nodes are marked either as concrete or abstract. In host graphs only nodes of concrete
types shall occur, while graphs in rules may contain nodes of both types.

Definition 1. (Type Graph with Inheritance) A type graph with inheritance is a triple
(TG, I, A) consisting of a type graph TG = (N, E, s, t) (with a set N of nodes, a
set E of edges, a source and a target function s, t : E → N ), an inheritance graph I
sharing the same set of nodes N , and a set A ⊆ N , called abstract nodes.
For each node n in I the inheritance clan is defined by clanI(n) = {n′ ∈ N |
∃ path n′ ∗−→ n in I} where path of length 0 is included, i.e. n ∈ clanI(n).
The sub-graph spanned by the hierarchy edges must be acyclic.

To benefit from the well-founded theory of graph transformation [8], type graphs
with inheritance can be flattened to ordinary ones.

Definition 2. (Closure of Type Graph with Inheritance) Given (TG, I, A) with TG =
(N, E, s, t), the abstract closure of (TG, I, A) is the graph TG = (N, E, s, t) with

– E = {(n1, e, n2) | n1 ∈ clanI(s(e)), n2 ∈ clanI(t(e)), e ∈ E},
– s((n1, e, n2)) = n1,
– t((n1, e, n2)) = n2, and
– projE((n1, e, n2)) = e for e ∈ E.

The graph T̂G = TG|N−A is called concrete closure of (TG, I, A).
Given a graph G = (N, E, s, t) and a set X ⊆ N , we denote by G|X the sub-graph
(X, EX = {e ∈ E | s(e), t(e) ∈ X}, s|EX , t|EX ).

The discrimination between the abstract and the concrete closure of a type graph is
necessary, since there are instance graphs with respect to either one. The left-hand side
(LHS) and right-hand side (RHS) of abstract rules are typed over the abstract closure,
while ordinary host graphs and concrete rules (see section 2.2 for rules) are typed over
the the concrete closure. Due to the existence of the canonical inclusion incTG : T̂G ↪→
TG all graphs typed over T̂G are also typed over TG.

Definition 3. (Instance Graph of Type Graph with Inheritance) An abstract instance
graph (G, type) of (TG, I, A) is an instance graph of TG, i.e. (G, type : G → TG).
Analogously, a concrete instance graph of (TG, I, A) is typed over T̂G.

The choice of triples for the edges of a type graph’s closure allows expressing a
typing property with respect to the type graph with inheritance. The instance graph can
be typed over the type graph with inheritance (for convenience) by a pair of functions,
one assigning a node type to each node and the other one assigning an edge type to
each edge. Both are defined canonically. A graph morphism is not obtained this way,
but some mapping that will be introduced as clan morphism, uniquely characterizing
the type morphism into the flattened type graph.
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Definition 4. (Clan Morphism) Given a type graph with inheritance (TG, I, A),
type′ : G → TG is a clan-morphism, if for all e ∈ GE holds

– type′N ◦ sG(e) ∈ clanI(sTG ◦ type′E(e)) and
– type′N ◦ tG(e) ∈ clanI(tTG ◦ type′E(e)).

type′ is called concrete, if type′N(n) /∈ A for all n ∈ GN .

The notion of a type refinement is used in order to formalize the relationship between
abstract and concrete rules as they are proposed in Section 2.2. It defines an order over
possible typing morphisms for a given instance graph. A typing morphism is said to
be finer than another one, if it assigns more concrete node types to the nodes of the
instance graph.

Definition 5. (Type Refinement)
(G, type′ : G → TG) is a type refinement of (G, type : G → TG), if

– type′N(n) ∈ clan(typeN(n)) for all n ∈ GN and
– type′E = typeE .

type′ is respectively called finer than type, denoted type′ ≤ type.

Applying graph transformation with node type inheritance to visual language def-
inition, usually needs attributed nodes. Thus, we have to clarify how the concept of
node type inheritance can be extended to node attributes. Assuming node type A has
attributes, a descendant node type B inherits not only all adjacent edge types but also
its attribute list. Of course, it should be possible to enlargen the inherited list by new
attributes.

If we use attributes only as labels, i.e. they are not changed during a transformation,
this kind of typed attributed graphs can be defined by ordinary typed graphs. (Poten-
tially infinite) sets of data values are considered as nodes. They are called data nodes
in contrast to object nodes denoting all other nodes of an attributed graph. Data nodes
and object nodes are linked by attributes, i.e. edges with an object node as source and
a data node as target. We assume that there are no edges starting at some data node. If
this property is satisfied within the type graph, it also holds for the instance graphs due
to the typing morphisms.

Summarising, graphs and graph transformation with node attributes which are not
changed are already captured by our formalisation. If we need a more general attribution
concept where computations can take place on attributes, future work is needed to extent
the formal approach.

Example: Type Graph for a Statechart Variant. Fig. 1 shows a type graph with
inheritance for a slightly modified sub-set of the Statecharts meta model proposed in
the UML specification [19]. For space limitations, the following simplifications have
been performed. Only PseudoStates of the initial kind (attribute ind) are considered, i.e.,
we eliminated classes SynchState, StubState and concurrent states and concentrate on
CallEvent and SignalEvent classes. Events are associated to the transitions they trigger
(and not to states). For simulation, objects need to receive events, so we modelled an
event queue (by relationships receives and next); the last event is a special one depicting
its end. Additionally, we added a relationship current to depict the state a particular
object is in. Note how the triple (TG, I, A) has been expressed in a single graph, where
the nodes of TG and I are the same, regular edges represent edges in TG, hollow
arrow-head edges represent edges in I and the elements of A are represented in italics.
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Fig. 1. Type graph with inheritance for a part of UML Statecharts.

2.2 Rules and Derivations
Transformations of graphs are described by graph rules. We follow the so-called Dou-
ble Pushout approach to graph transformation [8]. It is desired to allow abstract node
instances in rules, such that abstract rules actually represent a set of structurally similar
rules, we call concrete rules. To get all concrete rules for an abstract rule, any combi-
nation of node replacements in the rule’s LHS (being of concrete or abstract type) by
instances of respective concrete sub-types (reflexive and transitive, i.e. the type’s clan)
must be considered. The rule morphism’s image of an LHS node must always be re-
placed by an instance of the same type. The other nodes in the RHS remain the same
and therefore must be instances of concrete types. Concrete rules are structurally equal
to the abstract rule, their typing morphisms are finer (cf. Def. 5) than the ones of the
abstract rule and are concrete clan morphisms.

Definition 6. (Abstract and Concrete Rules)

An abstract rule typed over a type graph TG with inheritance is given by r = (L l←−
K

r−→ R, type, NAC), where l and r are graph morphisms, type is a triple of typing
clan morphisms type = (typeL : L → TG, typeK : K → TG, typeR : R → TG),
and NAC is a set of triples nac = (N, n, typeN) with N being a graph, n : L → N
an injective graph morphism, and typeN : N → TG a typing clan morphism, such that
the following conditions hold:

– typeL ◦ l = typeK = typeR ◦ r
– typeR,N(R′

N ) ∩ A = ∅, where R′
N := RN − rN (KN )

– typeN ◦ n ≤ typeL for all (N, n, typeN) ∈ NAC

A concrete rule rt with respect to an abstract rule r is given by rt = (L l←− K
r−→

R, t, NAC), where t is a triple of concrete typing clan morphisms t = (tL : L →
TG, tK : K → TG, tR : R → TG) such that the following conditions hold (cf. Fig. 2):

– tL ◦ l = tK = tR ◦ r
– tL ≤ typeL, tK ≤ typeK , tR ≤ typeR, and
– tR,N (x) = typeR,N(x)∀x ∈ R′

N .

The set of all concrete rules rt with respect to an abstract rule r is denoted by r̂.
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Fig. 2. Abstract and concrete rules.

The main idea for the application of an abstract rule is to apply one of its concrete
rules. Both the host graph and the concrete rule are typed by concrete clan morphisms
such that we can define the application of concrete rules. Later we will also define the
application of an abstract rule and the equivalence of both (cf. Theorem 1).

Definition 7. (Matching and Application of Concrete Rules)

Let rt = (L l←− K
r−→ R, t, NAC) be a concrete rule, (G, typeG) a typed graph,

with typeG : G → TG being a concrete clan morphism, and m : L → G a graph
morphism. m is a match with respect to rt and (G, typeG), if

– m is a match with respect to the untyped rule L
l←− K

r−→ R and the graph G,
– typeG ◦ m = tL, and
– m satisfies the negative application conditions NAC, i.e. for each (N, n, typeN) ∈

NAC it holds, that there does not exist a morphism o : N → G, such that o◦n = m
and typeG ◦ o ≤ typeN .

Given a match m, the concrete rule can be applied to the typed graph (G, typeG) via
m. A direct derivation step is denoted by (G, typeG)

rt,m
=⇒ (H, typeH) and can be

constructed similar to the classical theory of graph transformations [8].

In [2] we have shown that it is equivalent to apply concrete rules where typing
is given by concrete clan morphisms or to apply classical rules with typing morphisms
over a given type graph which is the concrete closure over a type graph with inheritance.
Nevertheless, it makes sense to examine whether it is possible to find a more direct
way to apply an abstract rule, because it is impractical for a tool implementing graph
transformation with node type inheritance to hold all concrete rules of an abstract rule in
memory or for each of them to find a match morphism into a host graph. Since abstract
and concrete rules differ only in typing, but have the same structure, a match morphism
from the LHS of the concrete rule into a given instance graph is also a match morphism
for the abstract rule, for the latter one not being compatible with typing, though. Using
the notion of type refinement, however, we can express a compatibility property.

Definition 8. (Matching and Application of Abstract Rules)

Let r = (L l←− K
r−→ R, type, NAC) be an abstract rule typed over TG, (G, typeG)

a typed graph with typeG : G → TG being a concrete clan morphism, and m : L → G
a graph morphism. Then m is a match with respect to r and (G, typeG), if
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– m is a match with respect to the untyped rule L
l←− K

r−→ R and the graph G.
– typeG ◦ m ≤ typeL.
– tK,N (x1) = tK,N (x2) for tK = typeG ◦ m ◦ l and all x1, x2 ∈ KN with

rN (x1) = rN (x2).
– m satisfies NAC, i.e. for each nac = (N, n, typeN) ∈ NAC it holds that it does

not exists a morphism o : N → G such that o ◦ n = m and typeG ◦ o ≤ typeN .

Given a match m, the abstract rule can be applied to (G, typeG) yielding an abstract
direct derivation (G, typeG)

r,m
=⇒ (H, typeH) with concrete type graph (H, typeH) as

follows:

1. Construct the untyped direct derivation G
r,m
=⇒ H in the sense of [9].

2. Construct typeD and typeH as follows
– typeD = typeG ◦ l′

– typeH(x) = if x = r′(x′) then typeD(x′) else typeR(x′′),
where m′(x′′) = x and x ∈ HE or x ∈ HN

Theorem 1. (Equivalence of Abstract and Concrete Direct Derivations)
Given an abstract rule r = (L ←− K −→ R, type, NAC) over a type graph TG
with inheritance, a concrete typed graph (G, typeG) and a structural match morphism
m : L → G (i.e. a match with respect to the untyped rule L ←− K −→ R). Then
the following statements are equivalent, where (H, typeH) is the same concrete typed
graph in both cases:

1. m : L → G is a match with respect to the abstract rule r yielding an abstract direct
derivation: (G, typeG)

r,m
=⇒ (H, typeH).

2. m : L → G is a match with respect to the concrete rule rt = L ←− K −→ R with
rt ∈ r̂ and tL = typeG ◦ m yielding a concrete direct derivation: (G, typeG)

rt,m=⇒
(H, typeH).

Theorem 1 allows us to use the dense form of abstract rules for model manipulation
instead of generating and holding all concrete rules, i.e., abstract derivations are much
more efficient than concrete derivations. In this sense, Theorem 1 allows us to use on
the one hand an efficient procedure and on the other hand we are sure that the result
is the same as in the classical theory using concrete rules. Moreover, as a consequence
of Theorem 1, graph languages built over abstract rules and mechanisms are equivalent
to graph languages that are built over a corresponding set of concrete rules. In general,
rules together with a start graph define a graph grammar building up a graph language.

In the case of attribute labels, it might be convenient to add variable nodes of data
types to rule graphs which are matched by concrete labels when applying such a rule.
Please note that in the following figures for our example, the same variable might occur
several times in a rule. It corresponds to one variable node which has to be matched by
one data node. (Compare e.g. rule 2 in Fig. 3.)

Example: Generation of Statecharts. The graph grammar for generating valid State-
chart instances according to the type graph with inheritance presented in Fig. 1 is shown
in Fig. 3, where especially the type StateVertex (SV) is abstract. Please note that we omit
the gluing graph K for illustrational reasons. The start graph contains a node of type
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StateMachine (SM) connected to an object (OB). The UML specification establishes
that a StateMachine has a unique top state of type State, but the UML well-formedness
rules establish that its type should be further refined into a CompositeState (CS). For
this purpose, rule 1 checks whether the StateMachine SM has already a top state and
if this is not the case, it creates a top state together with a CompositeState (CS) and a
PseudoState (PS) of the initial kind.
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Fig. 3. Graph grammar for generating valid Statecharts.

Rules 2, 3 and 4 create new SimpleState (SS), FinalState (FS) and CompositeState
(CS) objects inside a given CompositeState. In contrast to rule 1 (where the multiplicity
of relationship top in the side of the State class is “1..1”) the multiplicity of the sub-
vertex relationship (from CompositeState to StateVertex in the side of the latter class)
is “0..*”. This implies that there is no need for a negative application condition check-
ing the multiplicity. Additionally, each StateVertex should be connected to at most one
CompositeState through relationship subvertex. This is achieved by the graph grammar
as each newly created state is attached to a single CompositeState, and this relationship
cannot be modified later.

Finally, rules 5 and 6 allow connecting two objects of type StateVertex (SV). Rule
5 describes the insertion of a transition with SignalEvent (SEV), while rule 6 handles
the case of CallEvent (CEV). They are abstract rules as StateVertex is an abstract class.
Additionally, the UML specification establishes (by means of constraints expressed in
OCL) that a FinalState should not have any outgoing connection, that an PseudoState
of the initial kind should not have any incoming connection and at most one outgoing
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connection, and that the top state should not have any outgoing connection. We graph-
ically modelled these constraints by means of negative application conditions (NACs).
The advantages of using abstract rules here are clear, as otherwise we would have to
model rules for the valid combinations of the states we want to connect. Additionally,
the typing in NACs is more concrete than the corresponding typing in the LHS.

Fig. 4 shows a Statechart obtained through the derivation of the previous graph
grammar. The concrete syntax of the final Statechart is shown in the lower right corner.
In the third step in the derivation, abstract rule 5 is applied. Abstract types of nodes 1
and 2 in the rule instantiate to PseudoState PS and SimpleState (node called ‘SS1’ in
the graph), respectively. In the example, abstract rules 5 and 6 have been applied with
other instantiations to connect nodes ‘SS1’ (type SS) and ‘CS2’ (type CS), ‘CS2’ (type
CS) and ‘FS1’ (type FS), ‘SS2’ (type SS) and ’SS1’ (type SS), as well as PseudoState
PS and ‘SS2’ (type SS). Without the possibility to model abstract rules, we would have
had to create concrete rules for these combinations.
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Fig. 4. A derivation of the graph grammar for generating Statecharts.

Example: Simulation of Statecharts. Fig. 5 shows a rule set for simulating our sub-
set of Statecharts. The first rule adds the current relationship (c) to an object (OB) if
it does not already have one. The initial state is the only InitialState node which is a
subvertex (sub) of the top state. Rule 2 models a state change due to a transition from
the current state. This is an abstract rule, as StateVertex nodes are abstract. This feature
allows us to condense in a single abstract rule the combinations of all concrete sub-
types of StateVertex nodes. Rule 3 is similar to the previous one, but models a state
change into a composite state. In this case, the current state should be its initial state
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(that is, the PseudoState node is subvertex of the CompositeState). Rule 4 moves from
the initial state to another one without considering events (one does not have to wait
for an event to move from this PseudoState.) Finally, rule 5 models the fact that we
can change the state due to transitions departing from any of the super-states of the
current state. Thus, this rule allows going up in the subvertex hierarchy starting from
the current state. We cannot apply this rule, if the current state is already a subvertex
of the top state, or if the current state is indeed a PseudoState of the initial kind. The
latter restriction is modelled by assigning type State (ST) to the current state in rule 5
(PseudoStates are not sub-classes of State but of StateVertex). The reason for forbidding
this is that a transition in a PseudoState is still not finished, we have to end up in a node
sub-class of State.
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Fig. 5. Graph grammar for simulating Statecharts.

Fig. 6 shows an execution of the previous grammar to the Statechart we built in
Fig. 4. In the first step, we apply rule 1, setting the current state pointer to the Pseu-
doState (initial kind) of the top state. Then, abstract rule 4 moves the current state to
node ‘SS1’. Node 6 in the rule (StateVertex type) is matched to node ‘SS1’ in the graph,
typed over SimpleState. Next, abstract rule 3 is applied and the pointer is moved to the
initial state of composite state ‘CS2’. Node 2 (of type StateVertex) in the rule matches
node ‘SS1’ of type SimpleState in the graph; and the Event is of type CallEvent. Then,
abstract rule 4 can be applied, which moves the pointer to node ‘SS2’. The type instan-
tiation is from StateVertex in the rule to SimpleState in the graph. Now, abstract rule 5
is applied, moving the current pointer up in the hierarchy to node ‘CS2’. The type of
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node 2 (CompositeState) in the rule is instantiated to SimpleState of node ‘SS2’ in the
graph. For the following step, abstract rule 2 can be applied, and the pointer is set to
node ‘FS1’. The type instantiation is from StateVertex and Event in the rules to Compos-
iteState, FinalState and CallEvent in the graph. Here, no rule can be applied anymore,
and the simulation finishes. Thus, this graph grammar models all possible simulations
of the initial model. Some derivations may lead to dead ends. This may happen for ex-
ample, going up in the hierarchy with rule 5, and finally discovering that none of the
super-states have any outgoing transition.
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Fig. 6. A derivation of the simulation graph grammar starting from the graph generated in Fig. 4.

3 Integration of Meta-modelling with Graph Transformation

The extension of algebraic graph transformation with node type inheritance facilitates
its integration with meta modelling. If we identify model element classes with node
types and associations with edge types, a unique basis for the description of symbols
and their relations is laid. Model elements can share common attributes and relations
to other model elements which is expressed by a generalisation relationship. Similarly,
an inheritance relation is supported for node types (see Sec.2). Summarising, the in-
formation expressed by class diagrams in the meta modelling approach is formulated
by type graphs (with node type inheritance) for graph transformation. On top of this
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common basis, constraints are used to describe language properties in the meta mod-
elling approach. On the other hand, typed graph grammars describe the modelling lan-
guage as shown for the sample sub-language of Statecharts in Sec.2. In the following,
two approaches for visual language (VL) definition and model manipulation are pre-
sented which distinguish in exactly this design decision. We first shortly present these
approaches and compare them afterwards.

The GENGED Approach. In GENGED [1], a VL is defined (or generated) by an al-
phabet and a grammar. An alphabet establishes a type system for model elements (called
symbols) and their relations (called links), i.e. it defines the vocabulary of a VL. The ab-
stract syntax of symbols is represented by graph nodes, whereas graph edges represent
the abstract syntax of links. The layout of symbols is given by graphical objects defin-
ing node attributes, and for each edge (abstract link) at least one graphical constraint is
defined. An alphabet instance is given by an abstract syntax graph which is extended
by graphical objects for the layout; the corresponding graphical constraints are solved
accordingly. Usually, an abstract syntax graph is built up by VL rules (occurring in a
VL grammar) which are modeled as graph rules. The grammar definition as well as the
manipulation of models like Statecharts [3] is done purely by graph transformation as
GENGED uses the graph transformation engine AGG [11] for this purpose.

Up to now, neither meta modelling nor inheritance concepts are realized. For defin-
ing all the features of Statecharts as we did by the type graph in Fig. 1, this type graph
must be flattened in order to establish an alphabet. With the flatting, some more links
have to be added. Moreover, the set of VL rules would correspond to concrete rules,
i.e. the grammar contains many similar rules. Using node type inheritance concepts as
proposed in Sec. 2 would reduce the set of rules in a sense that the proposed abstract
rules have to be defined only. Such concise rule sets can be used to define concise ab-
stract grammar rules for different purposes then, like syntax-directed editing, parsing,
and simulation as it is supported by GENGED.

The AToM3 Approach. AToM3 [10] is a multi-paradigm modelling tool, which in-
cludes meta modelling, multi-formalism and modelling at different abstraction levels.
Its main component is the kernel, responsible for loading, saving, creating and manip-
ulating models, as well as for generating code for the meta modelled formalisms. The
generated code must be loaded on top of the kernel again to allow the user building
models in the defined formalism. The tool uses a pure meta modelling approach for
VL definition, i.e. a VL is completely defined by a meta model, which is a type graph
with inheritance with additional constraints. Some of them are assigned (pre- or post-
conditions) to events (editing, connecting, etc.), the evaluation of which prohibits or
enables the execution of the events and guarantees model correctness by construction.

In AToM3, models can be manipulated by means of Python or with graph gram-
mars. Typical manipulations are simulation, optimization and formalism transforma-
tion (which produces an instance model of a different meta model). When defining
graph grammar rules, one may choose either an “exact type matching” or a “sub-type
matching”. In the latter case, rules are considered abstract and any node can be matched
with any of its sub-types. There is no distinction between abstract and concrete nodes
and sub-typing relationships are found at runtime (by comparing nodes attributes and
connections). This is due to the fact that some of the formalisms for meta modelling
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do not provide for inheritance. This feature also allows applying transformation rules
to instances of meta models that are not explicitly related through inheritance relation-
ships. In this way, the inheritance concept can be mapped to the semantics defined in
this work, as AToM3 can be configured to work in the Double Pushout approach.

Comparison of Both Approaches. After having defined the classes or types of model
elements and their relations, AToM3 supports the meta modelling approach which yields
in a free editor where the model is checked according to given language constraints at
specific events. Instead, GENGED can generate two kinds of editors: Either editing is
done in a syntax-directed way where graph rules define the editor operations or free
editing is supported where a parser has to check, if the edited model is syntactically
correct. While the definition of a language by corresponding language constraints is
usually easier, a parser is normally more efficient than a constraint checker. Syntax-
directed editing assumes a language understanding which knows well about the struc-
ture and dependencies of its elements. Pure syntax-directed editors can be directly de-
duced from a language grammar. Combining both kinds of editing, the corresponding
specification can be purely rule-based or mixed in the sense that rules define complex
editing operations while language constraints define syntactic correctness.

Both approaches use graph transformation for model manipulations such as simula-
tion. Due to the availability of node type inheritance, graph transformation concepts can
build up directly on meta modelling concepts as in AToM3. In GENGED, several kinds
of graph transformation systems are used for different purposes as editing, parsing and
simulation. Node type inheritance can condense each of them.

4 Related Work

Considering the node type inheritance concept for graph transformation, there are al-
ready tools like [21, 20] which support this concept in the same or nearly the same way.
However, node type inheritance has been rarely considered in formal graph transfor-
mation approaches. The graph transformation-based language PROGRES is formalised
by programmed structure rewriting systems [21] where so-called schema consistent
structures are transformed. A schema corresponds to a type graph with node type inher-
itance, while a schema consistent structure corresponds to a well-typed instance graph.
Thus, a formalisation of node type inheritance is available for PROGRES, but there
is no theory building up on that. GME [16] e.g., is a meta modelling tool (for model
integrated computing) which has lately incorporated graph transformation techniques
for model manipulation, although its approach is not founded on the theory of graph
transformation and its formalization has not been shown.

At the “Symposium on Visual Languages and Formal Methods” in 2001 there was a
so-called “statechart modeling contest” where declarative as well as constructive meth-
ods have been used to define Statecharts and their behaviour. No winner was selected,
but the specific strengths of the different methods have been discussed. There was not
any approach integrating meta modelling with graph transformation, thus combining
declarative with constructive methods. A number of graph transformation-based ap-
proaches were presented where most of the approaches could have been simplified us-
ing the hierarchy concept proposed in the present work. In addition, there is the work
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in [22] where Statecharts modelling is based on a meta model for extended hierarchical
automata and graph transformation rules for its simulation. A similar approach is taken
into account in [10] where a graph grammar is used to transform Statecharts to Petri
nets which can be simulated, but there is no connection to formal graph transformation
approaches.

The approach of [15] uses transformation units for generating and simulating stat-
echarts, and is a clear example where our approach could have simplified the graph
grammars. They encode the type hierarchy in graph grammar rules in such a way that
they define rules for replacing each super-type for each one of its sub-types. Nonethe-
less, embedding conditions are needed for these rules and are not directly applicable in
the standard Double Pushout approach.

5 Conclusions

In the literature, the main approaches to visual language definition are meta modelling
and grammar-based approaches. We discussed how to integrate meta modelling with
graph grammar concepts in order to support an efficient language definition and model
manipulation. We presented two concrete approaches which differ in the way how meta
modelling and graph transformation concepts are used and compared them.

The integration of meta modelling with graph transformation is based on a node
type inheritance concept for algebraic graph transformation. This concept allows the
definition of abstract rules, in which abstract nodes can appear. These can be matched
with nodes of any of its sub-types. The concept is extremely useful in practice as graph
grammars can be notably simplified. This has been demonstrated by showing a gen-
eration and a simulation grammar for a sub-set of UML Statecharts. The formalism
presented is restricted to attributes being labels. It is up to future work to extend this
work to attributed graph transformation where computations on attributes can take place
and also edges may be attributed.

Moreover, analysis techniques available for attributed graph transformation such as
constraint checking [14, 17] and critical pair analysis [13], should be lifted to graph
transformation with node type inheritance. Having e.g. constraint checking available,
language requirements could be expressed by syntactic consistency constraints in the
meta modelling approach first. If parsing rules are developed thereafter, their correct-
ness with respect to requirements could be checked. In this way we ensure that the
language defined by the parser is at least a sub-language of that defined by constraints.
Critical pair analysis can be useful to optimise the visual language parser (see [7]).
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Abstract. We present a formal operational semantics for Stateflow, the
graphical Statecharts-like language of the Matlab/Simulink tool suite
that is widely used in model-based development of embedded systems.
Stateflow has many tricky features but our operational treatment yields
a surprisingly simple semantics for the subset that is generally recom-
mended for industrial applications. We have validated our semantics by
developing an interpreter that allows us to compare its behavior against
the Matlab simulator. We have used the semantics as a foundation for
developing prototype tools for formal analysis of Stateflow designs.

1 Introduction

The design process for embedded systems has changed dramatically over the last
few years. Increasingly, designers use model-based development environments;
these allow the system, including its software, the plant that it will control, and
the environment in which it will operate, to be represented in graphical form
at a high level of abstraction. Model-based development environments provide
extensive tools for validation through simulation, and code generators that can
compile an executable controller from its graphical representation. One of the
most widely used environments of this kind is the Matlab suite from Mathworks
which, with more than 500,000 licensees, is widespread throughout aerospace,
automotive, and several other industries, and ubiquitous in engineering educa-
tion.

Stateflow is a component of the Simulink graphical language used in Matlab.
It allows hierarchical state-machine diagrams à la Statecharts to be combined
with flowchart diagrams in a very flexible way. Stateflow is generally used to
specify the discrete controller (i.e., the software) in the model of a hybrid system
where the continuous dynamics (i.e., the behavior of the plant and environment)
are specified using other capabilities of Simulink. As part of the Matlab tool
suite, Stateflow inherits all its simulation and code generation capabilities.
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The evolution to model-based development has been driven by the growing
number of embedded systems, and their increasing complexity. Alongside these
developments has been an increase in the criticality of embedded systems, with
regard to both human safety (e.g., fly-by-wire control systems) and the cost of
faults (e.g., systems deployed in huge quantities in automobiles and domestic
appliances). This increasing criticality creates a need for improved methods of
analysis and verification, and this provides an opportunity for formal methods.
Formal methods can provide tools to check properties of a design and they
can also apply a computational procedure, such as generation of test cases,
systematically and automatically, to all parts of a design. However, notations
like Stateflow were not built with formal methods in mind, and do not appear
to be well suited to formalization.

1.1 Understanding Stateflow

Stateflow is a complex language (its User’s Guide [1] is 896 pages long) with
numerous, complicated, and often overlapping features lacking any formal def-
inition. Its documentation [1, Chapter 4] describes the semantics in informal
operational terms, supported by numerous examples, but the actual definition
of the language is the “simulation semantics” given by its behavior when simu-
lated in the Matlab environment. Proposing formal tools for Stateflow requires
first giving it a formal definition.

This complexity of the language can be seen as an obstacle to formalization.
On the other hand, it makes the need for tools to help programmers clearly
visible, and users of the language are asking for them. For example, a Stateflow
program can fail with a runtime exception for any of several reasons, and it is
desirable to be able to avoid such failures, or at least be able to detect when a
program may be vulnerable to them. One popular way to do this is to rely on
programming guidelines [2,3] that restrict the language to a safe kernel. These
guidelines have no more formal basis than the language itself and are based
on experience. Precisely identifying the reasons for runtime errors would allow
development of static analysis tools that could guarantee their absence.

1.2 A Framework for Formal Tools

In this work, we propose a formalization of Stateflow that can be used as a start-
ing point for the definition of formal tools. Thus, we choose not to idealize the
language but to follow strictly the simulation semantics given by the Mathworks
documentation and tools, even in its shortcomings. The main result lies in un-
derstanding that although Stateflow is superficially similar to other statecharts
notations, it is in truth a sequential imperative language. As such, the prob-
lems arising when formalizing the language are different in nature than those for
other statechart languages, and different solutions are required. We use a formal
operational semantics as it precisely captures the order of execution of the dif-
ferent components of a Stateflow chart. This operational approach satisfies our
goal and is able to express the more complicated features of the language where
alternative approaches (e.g., denotational) might get lost.
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We have used this formalization in the development of several tools for State-
flow; it provides a detailed understanding of the language, and readily supports
the construction of static analyzers and translation to formal tools such as model
checkers.

1.3 Overview of the Paper

We first introduce Stateflow through an example. Section 3 develops a formaliza-
tion of a subset of the language and gives it an operational semantics. Finally,
in Section 4 we compare our approach with related work and sketch why the
approach proposed here seems to be a good basis for developing formal tools for
the language.

2 Introduction to Stateflow

The Stateflow language provides hierarchical state machines, similar to those of
Statecharts (although these two languages give different semantics to the state
machines). It includes complicated features like interlevel transitions, complex
transitions through junctions (which are portrayed as small circles), and event
broadcasting. Stateflow also provides flowcharts, which are specified using inter-
nal transitions leading to terminal junctions. Describing the whole language is
beyond the scope of this paper, so we present here a simple example program
that includes both kinds of notation and sketch its execution.

2.1 A Stopwatch in Stateflow

Figure 1 presents the Stateflow specification of a stopwatch with lap time mea-
surement. This stopwatch contains a counter represented by three variables
(min, sec, cent) and a display, also represented as three variables (disp min,
disp sec, disp cent).

[sec==60] {
  sec=0;
  min=min+1;
}

[cent==100] {
  cent=0;
  sec=sec+1;
}

TIC {
  cent=cent+1;
}LAP {

  cent=0; sec=0; min=0;
  disp_cent=0; disp_sec=0;  
  disp_min=0;
}

Run

Running

Lap

during:
disp_cent=cent;
disp_sec=sec;
disp_min=min;

LAPLAP

Stop

Reset

Lap_stop

LAP

START

START

START

START

Fig. 1. A simple stopwatch in Stateflow
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The stopwatch is controlled by two command buttons, START and LAP. The
START button switches the time counter on and off; the LAP button fixes the
display to show the lap time when the counter is running and resets the counter
when the counter is stopped. This behavior can be modeled as four exclusive
states:

– Reset: the counter is stopped. Receiving LAP resets the counter and the
display, receiving START changes the control to the Running mode.

– Lap Stop: the counter is stopped. Receiving LAP changes to the Reset mode
and receiving START to the Lap mode.

– Running: the counter is running, and the display updated. Receiving START
changes to the Stop mode, pressing LAP changes to the Lap mode.

– Lap: the counter is running, but the display is not updated, thus showing
the last value it received. Receiving START changes to Lap Stop, receiving
LAP changes to Running.

These four states are here grouped by pairs inside two main states: Run and
Stop, active respectively when the counter is counting or stopped. The counter
itself is specified within the Run state as a flowchart, incrementing its value every
time a clock TIC is received (every 1/100s).

2.2 Executing the Stopwatch Chart

A Stateflow chart always has one active state. Executing the chart consists in
executing the active state each time an event occurs in the environment. Events
here are either an action on one of the buttons (START or LAP) or a clock tick
(TIC). Executing the active state is done in three steps:

1. See if a transition leaving the state can be taken, else goto step 2.
2. Execute internal actions (internal transitions, then during actions).
3. Execute any internal state that is active.

Transitions can be guarded by events or conditions or both, and they can trig-
ger actions. The internal transition in state Reset for example is guarded by
the LAP event and triggers a series of actions reinitializing the counter and the
display. Supposing that the Run state is active, with the Running substate active,
receiving the START event would trigger the following sequence of reactions:

– there is no transition leaving the state (the transitions guarded by start
belong to its substates),

– the flowchart is executed, but is guarded by TIC, thus does nothing,
– the active substate is executed, it has a transition which can be fired, leading

to Reset, itself substate of Stop; Running then Run are exited, and Stop then
Reset are entered.

This step is completed, and execution will continue from the newly active state
next time an event is received from the environment.
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The model contains a flowchart that implements the counter. Flowcharts are
described using transitions between junctions. Unlike states, a junction is exited
instantaneously when entered, and the flowchart executes until a terminal junc-
tion (a junction without outgoing transitions) is reached, or all paths have failed.
Backtracking can occur if a wrong path is tried. In our example, the flowchart
is guarded by the TIC event. If activated under this event, the cent variable is
incremented and the first junction reached. Two transitions leave it, the guarded
one is always executed first. If cent is equal to 100, the guarded transition is
taken, cent initialized to 0 and sec incremented, the second junction is reached,
and execution continues. If cent is not equal to 100, the guarded transition fails,
the unguarded one is tried and, being unguarded, succeeds, leading to the third
junction, which is terminal, so execution ends.

This short example does not present all Stateflow features, but it introduces
hierarchical states, interlevel transitions, and mixed design with flowcharts. Our
informal description of the execution of this example is actually close to the
presentation of the language’s semantics in its documentation.

3 Formalizing Stateflow

Studying the language, we came to realize that, although superficially similar
to other statechart notations, Stateflow greatly differs from them. In particular,
all possibilities of non-determinism are avoided by relying on strict ordering
rules, and the scheduling between concurrent components is always statically
known. Thus, we decided to consider Stateflow as an imperative language, and
to use a structural operational semantics (SOS) [4], which is well-adapted to
the description of such languages. This semantics is efficient in dealing with the
complexity of Stateflow, which lies in the intricacy of its constructions, not in
concurrency or non-determinism.

3.1 A Stateflow Subset

We now introduce a linear language that is a strict subset of Stateflow. This
language eliminates some difficulties of the graphical notation, by making the
order between components explicit (we describe translation from the graphical
form below). We then give this language a formal semantics.

The Language – The language is presented in Figure 2. Its basic components
are states s, junctions j, events e, actions a, and conditions c. We also define
active states sa (nothing or a state), transition events et (nothing or an event),
and paths (lists of states).

Transitions t are guarded by a transition event and a condition, can execute
two actions and go to a destination d (either a path or a junction). The first
action is executed as soon as the transition is valid; the second one is executed
only if taking the transition leads somewhere.
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Transitions are grouped into lists T . Junction definition lists J associate lists
of transitions to junctions. State definition lists SD associate state definitions
sd to states. A state definition is a triplet of actions, executed respectively upon
entering, executing and exiting the state, an internal composition, a list of inner
transitions, a list of outgoing transitions, and a junction definition list. Finally,
a composition C is a composition of states, and is either an And or an Or com-
position. An And composition is defined by a boolean (true if the composition is
active) and a state definition list. An Or composition is an active state, a path,
a set of default transitions, and a state definition list.

composition C = Or(sa, p, T, SD) | And(b, SD)

state definition sd = ((a, a, a), C, Ti, To, J)
state definition list SD = {s0 : sd0; ...; sn : sdn}

junction definition list J = {j0 : T0; ...; jn : Tn}

transition t = (et, c, a, a, d)
transition list T = ∅T | t.T

state s active state sa = ∅s | s
junction j
path p = ∅p | s.p destination d = p | j
event e transition event et = ∅e | e
action a condition c

Fig. 2. The language

Notes on the Language

– Actions a and conditions c are expressions of the action language, which
is distinct from Stateflow itself; we keep this distinction here. The action
language is a very simple imperative language. For the same reason we do
not have variables here, they are part of the action language, not of Stateflow
itself.

– Transition list T and state definition lists SD are ordered, and their order
is significant. When using the graphical representation of a program, the
order is determined by the position of the components on the chart: states
are ordered top to bottom and then left to right. Transitions are ordered
following the 12 o’clock rule: they are first ordered using a partial ordering
on the form of their guards (transitions guarded by an event are evaluated
before transitions guarded only by a condition, and unguarded transitions
come last), and when this ordering fails, they are ordered by following their
source clockwise starting from a 12 o’clock position.

– In the following, state definitions will be written (A, C, nTi, To, J), with A
representing a triplet of actions: the entering, during, and exit actions
will be noted respectively as A.e, A.d, and A.x.
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An Example – The Stop state from the stopwatch:

Stop: ((�, �, �),
Or(∅s,Stop, (∅e, �, �, �, Stop.Reset).∅T ,
{ Reset: ((�, �, �), Or(∅s,Stop.Reset, ∅t, { }),

(LAP, �,
(cent ← 0; sec ← 0; min ← 0;
disp cent ← 0; disp sec ← 0; disp min ← 0), �, j).∅T ,

(START, �, �, �, Run.Running). ∅T , {j : ∅T });
Lap stop: ((�, �, �), Or(∅s, Stop.Lap stop, ∅T , { }),∅T ,

(LAP, �, �, �, Stop.Reset).
(START, �, �, �, Run.Lap). ∅T , { }) }),

∅T , ∅T , { })
The � symbol represents both an empty action and an empty condition. The
name j corresponds to the terminal junction found in state Reset (junctions
being anonymous in Stateflow, they are given unique ids during the translation).

We see here that Stop is a state, containing an Or composition made from
states Reset and Lap Stop. Reset contains an internal transition guarded by
LAP and a transition guarded by START going to state Run.Running; Lap Stop
contains two transitions, one guarded by LAP going to state Stop.Reset, the
other guarded by START going to state Run.Lap.

3.2 Operational Semantics

Executing a Stateflow program consists, on each (discrete) step, in processing
an input event through the program. This processing can modify the value of
variables in the environment, raise output events, and change the program itself
as it may change the active states if transitions occur.

We propose here an SOS semantics for the language. This semantics precisely
expresses the sequence of actions involved in processing an event through a chart.
It is made of rules with the following general form:

e, D � P
D′
→ P ′, tv

Processing an event e in an environment D through a program component P
produces a new environment D′, a new program P ′, and a transition value tv.
P can here denote any syntactic class of the language. Transition values tv are
used for communication between different parts of the chart. The rules for some
of the particular syntactic classes given below extend and slightly differ from
this general form.

Environments D contain bindings from variables of the action language to
values and the list of output events that are raised in the current instant.

Definition 1 (Environment D).

D ::= [x0 : v0; ...; xn : vn; e0; ...ek]
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Transition values indicate if a transition has fired or not. If no transition has fired,
two distinct values, End and No, are necessary to distinguish a failing transition
from the final transition of a flowchart. If a transition has fired, we keep track
of its destination and of an eventual pending action.

Definition 2 (Transition value tv).

tv ::= Fire(d, a) | End | No

As for the definition of the language, we do not detail the semantics of actions
and conditions here but consider that we have semantics rules such that

e, D � a ↪→ D′ e, D � c→ b

Evaluating an action when processing event e in environment D produces a
new environment D′; evaluating a condition when processing e in D produces a
boolean value b.

We now present the semantic rules for the different syntactic classes. For
brevity we only detail rules for transitions, transition lists and parallel compo-
sitions, the full rules are available in an appendix.

Transitions (Figure 3) – A transition (e0, c, ac, at, d) fires to destination d if e0
corresponds to the processed event e or is empty, and if the condition c is
true. In this case, the action ac is immediately executed and at is left pending
in the returned value (rule t-Fire). If e0 is different from the processed event
and is not empty (rule t-No1) or if the condition is false (rule t-No2), the
transition fails and returns No.

t-Fire
(e = e0) ∨ (e0 = ∅e) e, D � c → true e, D � ac ↪→ D′

e, D � (e0, c, ac, at, d) D′
→ Fire(d, at)

t-No1

(e �= e0) ∧ (e0 �= ∅e)

e, D � (e0, c, ac, at, d) D→ No

t-No2

(e = e0) ∨ (e0 = ∅e) e, D � c → false

e, D � (e0, c, ac, at, d) D→ No

Fig. 3. Rules for transitions t

Transition Lists (Figure 4) – Lists of transitions, together with junctions, are
used to model both flowcharts and complex transitions between states. The
important point here is that a list of transitions is processed sequentially
and the first transition that can fire is taken, as shown by rules T-No and
T-Fire.
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If a transition fires to a junction, the list of transitions associated with this
junction needs to be processed: evaluation continues instantaneously when
reaching a transition. This goes on until we fire to a path (rule T-Fire-j-F),
we reach a terminal junction (rule T-End) or we fail, in which case we have
to backtrack and try the next transition in our first list (rule T-Fire-j-N).

∅t

e, D, J � ∅t
D→ End

T-Fire
e, D � t

D′
→ Fire(p, act)

e, D, J � t.T
D′
→ Fire(p, act)

T-No-Last
e, D � t

D1→ No

e, D, J � t.∅T
D1→ No

T-No
T �= ∅T e, D � t

D1→ No e, D1, J � T
D2→ tv

e, D, J � t.T
D2→ tv

t-Fire-j-F
e, D � t

D1→ Fire(j, a1) e, D1, J [j : Tj ] � Tj
D2→ Fire(p, a2)

e, D, J [j : Tj ] � t.T
D2→ Fire(p, a1; a2)

t-End
e, D � t

D1→ Fire(j, a1) e, D1, J [j : Tj ] � Tj
D2→ End

e, D, J [j : Tj ] � t.T
D2→ End

t-Fire-j-N
e, D � t

D1→ Fire(j, a1) e, D1, J [j : Tj ] � Tj
D2→ No e, D2, J [j : Tj ] � T

D3→ tv

e, D, J [j : Tj ] � t.T
D3→ tv

Fig. 4. Rules for transition list T

State Definitions – The rules exhibit their order of execution. Different rules
are necessary for entering, executing, and exiting a state. When executing
a state, outgoing transitions are tested first; if they fail, the during code is
executed, then the internal transitions and then the internal composition. If
the composition fires, the transition actions are executed followed by the exit
code. If the outgoing transitions fire, the transition actions are executed, the
internal composition exited, and the exit code executed.

Or Compositions – Rules for Or compositions take care of the control changes
between states and handle interlevel transitions. The currently active state
is executed. If this state fires, either it fires to one of its siblings, in which
case this sibling is entered and becomes the active state, or it fires outside
of the composition.
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And Compositions (Figure 5) – Executing an And composition consists in
sequentially entering/executing/exiting all its parallel substates, each state
being executed in the environment returned by the execution of its prede-
cessor. It is important to notice here that the parallel construction is in fact
completely sequential, and the order of execution statically known: none of
the problems associated with concurrency appears here.

And
(tv = No) ∨ (tv = End) ∀i ∈ [0..n], e, Di, J � sdi

Di+1→ sd′
i, No

e, D0, J, tv � And({s0 : sd0; ...; sn : sdn})
Dn+1→ And({s0 : sd′

0; ...; sn : sd′
n}), No

And-Init

pj = p ∀i �= j, pi = ∅p ∀i ∈ [0..n], e, Di, pi � sdi

Di+1

⇑ sd′
i

e, D0, sj .p � And({s0 : sd0; ...; sn : sdn})
Dn+1

⇑ And({s0 : sd′
0; ...; sn : sd′

n})

And-Exit

∀i ∈ [0..n], e, Di � sdn−i

Di+1

⇓ sd′
n−i

e, D0 � And({s0 : sd0; ...; sn : sdn})
Dn+1

⇓ And({s0 : sd′
0; ...; sn : sd′

n})

Fig. 5. Rule for AND compositions

3.3 Supporting Local Events

We now extend our treatment to include one of the trickiest features of Stateflow,
the local events mechanism, which the preceding semantics does not consider.
This mechanism allows actions to send an event to a state; when this occurs, the
current processing is interrupted while the sent event is processed through the
receiving state. The receiving state acts here as a function, the action of sending
it an event being the function call. However, this mechanism also introduces some
complicated cases and fully supporting it in the general case appears difficult. We
exhibit a restricted form of this mechanism that is both expressive and supports
a simple semantics.

We first try to extend our semantics with a simple interpretation of local
events. The action send(e, s) sends event e to a named state s (broadcasting
an event to the whole chart consists in sending an event to the main state). Its
behavior can be expressed by the following rule:

Send

e′, D[s : sd], ∅J � sd
D′
→ sd′, tv

e, D[s : sd] � send(e′, s) ↪→ D′[s : sd′]
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Sending e′ to state s results in processing it through the definition of s. We have
extended environments by the definitions of states:

Definition 3 (Environment D).

D ::= [x0 : v0; ...; xn : vn; e0; ...ek; SD]

where SD is a list of state definitions. The notation D[s : sd] denotes the envi-
ronment D in which s is associated to sd.

However, this rule alone does not fully handle event sending; deeper mod-
ifications of the semantics are needed. Processing the local event changes the
definition of the destination state (in the rule, the definition of s is sd’ after
processing the event). The destination state can be an ancestor of the current
state, which might have been modified. It is necessary, whenever an action is
performed, to read the (eventually new) definition of the current state and con-
tinue the execution at the corresponding control point in this new definition. If
the active state has been modified by the call, the return point may even not be
active anymore, which leads in Stateflow to a runtime error.

Investigating this mechanism to understand its behavior and its expressive
power, we distinguished two different usages:

– Describing recursive behaviors. Recursion occurs if the caller sends an event
to itself or one of its ancestors. In practice, those recursions are very difficult
to control (the event sending action might get executed by the recursive call)
and to understand. Providing tools to check that the recursion will stop is
difficult (see [5]). Moreover, these recursions easily lead to runtime errors
and their use is discouraged in industrial applications.

– Explicit scheduling of parallel states. Parallel states are normally ordered
statically given their position on the chart. Local events can be used to
make some explicit, or dynamic, scheduling of parallel states, guarding the
states by local events and having a caller that executes them in the expected
order. This particular use is much simpler to understand.

Our proposition is to limit the use of local events to the definition of sequencing
behaviors. This can be obtained by imposing the following restrictions:

– Local events can be sent only to parallel states.
– Transitions out of parallel states are forbidden (this is already imposed by

Stateflow, see Section 3.4 for more details).
– Loops in the broadcasting of events are forbidden (i.e., if state A broadcasts

an event to state B, B cannot in turn broadcast an event to A).

Given those limitations1 sending an event can really be seen as a function call.
Forbidding transitions out of parallel states ensures that context modifications
are kept local to the destination. Forcing sending to parallel states and forbidding
loops ensures that no infinite calls will occur. The rule for sending an event is
1 To keep equivalence with Stateflow, we further impose that local events can be sent

only to already-visited states; this is due to initialization problems in Stateflow itself.
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the rule presented before. In addition to this, we need to change only the rule
for parallel execution:

And
D0 = D[s0 : sd0; ...; sn : sdn]

∀i ∈ [0..n], e, Di, {} � Di(si)
D′

i→ sd′
i, No Di+1 = D′

i[si : sd′
i]

e, D � And({s0 : sd0; ...; sn : sdn}) Dn+1\{s0,...,sn}→
And({s0 : Dn+1(s0); ...; sn : Dn+1(sn)}), No

The rule is similar to the original one, with the addition of the state definitions
in the environment, where they are updated during execution.

This definition of local events in our opinion captures the most interesting
of their uses in Stateflow, supports a simple semantics, and does not introduce
new runtime error or infinite loop possibilities. The Ford guideline for Stateflow
[2] makes use of local events in this exact same way.

3.4 Additional and Unsupported Features

Our subset supports nearly the whole language with the restrictions on local
events presented above. The only interesting feature still missing is the history
junction mechanism that keeps track of the configuration a state was in before
it was last exited, and re-enters it in this configuration. Our semantics easily
extends to support this mechanism; we omitted it here for the sake of simplicity.
The necessary modifications are to add a history component (a boolean) in the
state definitions to determine whether they carry such junctions, and to add rules
to handle this component when entering and leaving states and compositions.

Two restrictions are also imposed on transitions: transitions out of a parallel
compositions and interlevel transitions going to a junction are forbidden. Tran-
sitions directly out of a parallel state are already forbidden in Stateflow, but can
be simulated by taking an interlevel transition from a substate of a parallel state.
The behavior of such transitions is quite unpredictable, and introduces possible
runtime errors (e.g., two states fire simultaneously out of the composition to
different destinations). Forbidding interlevel transitions to a junction allows the
semantics to be local. When taking an interlevel transition to a state, pending
actions can be executed and the state closed before entering the destination. If
the transition goes to a junction, we cannot be sure that it is leading somewhere,
and cannot close the state before opening the destination.

3.5 Equivalence with the Simulation Semantics

Our language is intended to be a strict subset of Stateflow, so that tools devel-
oped for it will apply to programs designed using Mathworks’ tools – as long as
the programs are within our subset (which is checked by a tool, see Section 4.2).

For this to succeed, the semantics we are using and the simulation semantics
of Stateflow must be equivalent on our subset. Our semantics was conceived with
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this goal in mind, precisely following Stateflow documentation but, because the
simulation semantics is not formal, it is not possible to prove this equivalence.
However, our SOS semantics is directly executable and can easily be used to
define a Stateflow interpretor whose outputs can be compared to those from
the Matlab simulator. We have done this and systematically examined many
examples; for all these examples, the traces obtained by the two tools were the
same.

4 Conclusion and Related Work

We have presented an operational semantics for the Stateflow language. Our se-
mantics covers virtually the whole language, excluding only those features that
are generally discouraged in industrial applications [2]. A formal semantics is the
necessary basis for building formal tools for the language. The operational ap-
proach chosen here leads to a surprisingly simple semantics and thus constitutes
a good starting point for such developments.

4.1 Related Work

Little work has directly addressed the semantics of Stateflow. A natural idea
when considering Stateflow is to evaluate work on formalization of Statecharts [6].
However, the two languages have very different semantics (and Stateflow also in-
cludes flowcharts), so denotational approaches proposed for Statecharts seman-
tics do not easily or usefully adapt to Stateflow.

A popular approach to Statecharts semantics is to translate the language
into a simpler formalism for which a semantics is already known. This approach
was followed by Mikk et al. for Statemate [7] by translation to hierarchical au-
tomata. Their semantics was adapted to UML-Statecharts by Gnesi, Latella and
Massink [8]. A similar semantics was proposed for Stateflow by Tiwari, Shankar
and Rushby [5] by translation to push-down automata. However, encoding the
complex Stateflow language constructions requires introduction of a vast number
of control variables that make using the translation by formal tools difficult.

Lüttgen, von der Beeck, and Cleaveland [9] have proposed an SOS semantics
for a subset of Statecharts. They wanted to define a compositional semantics
and do not consider interlevel transitions. We can notice the same effect here:
although our semantics is not compositional (the language contains absolute
reference to states), it can be made compositional by forbidding interlevel tran-
sitions. They also need to consider execution on a micro and on a macro level,
which is not necessary here due to the completely deterministic nature of State-
flow.

The appeal of the proposed SOS semantics for Stateflow, and what makes it
work, is that it exhibits the sequential behavior of Stateflow: the language does
not have true concurrency nor any kind of nondeterminism. Seeing Stateflow as
an imperative language, the choice for an operational approach is natural, and
has the advantage of scaling well to a rich language allowing a big subset to be
considered.
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A similar approach is implicit in the work of Banphawatthanarak, Krogh, and
Butts [10], who describe a translator from Stateflow into the input language of
the SMV model checker. Although they do not construct an explicit semantics,
the considerations that guide their translation are very close to ours and reflect a
similar focus on the sequential nature of Stateflow execution and the importance
of accurately representing its sequencing rules.

4.2 A Good Basis for Formal Tools

Our goal was to propose a formalization of Stateflow that would constitute a
good foundation for construction of formal tools for the language. The presented
semantics appears to meet this goal very well: while sometimes large, the rules
of the semantics are simple and syntax directed, which makes them well adapted
to automatic processing.

One kind of tool in which we are interested is static analysis for detecting
flaws in programs and to enforce or enhance programming guidelines such as [2].
The proposed semantics, by giving a low-level view of a program’s execution
makes it possible to understand causes of runtime errors (through missing rules
in the semantics). We have developed such a tool that checks for possible runtime
errors and also detects non fatal flaws, such as possible backtracking or reliance
on the 12 o’clock rule. Having a syntax-directed semantics allows a precise diag-
nosis to be given to the user. This tool also verifies that a program lies within
the subset considered by our semantics.

We are also interested in model checking, which can be used to check prop-
erties of programs and to automate test case generation [11,12]. Our operational
semantics provides a basis for efficiently compiling Stateflow to an imperative
language or to the input language of a model checker. We have developed a
translator to the SAL language used by SRI’s model checkers; the translation
produces efficient code similar in size to the Stateflow model. The SAL transla-
tion can be used to check properties of a design: our example (Figure 1) contains
a bug which the model-checker easily finds (updating the display is only done
when staying at least one instant in the Running state; if several LAP and START
events occur between two TICs, the display can show an erroneous value). We are
currently using this translation to do automatic test-case generation for State-
flow.

In future work, we plan to investigate the formalization of the whole
Simulink/Stateflow environment. One possible direction is to combine this work
with existing work on Simulink [5,13].

References

1. The Mathworks: Stateflow and Stateflow Coder, User’s Guide. Release 13sp1 edn.
(2003)

2. Ford: Structured analysis and design using Matlab/Simulink/Stateflow - model-
ing style guidelines. Technical report, Ford Motor Company (1999) Available at
http://vehicle.me.berkeley.edu/mobies/papers/stylev242.pdf.



www.manaraa.com

An Operational Semantics for Stateflow 243

3. Buck, D., Rau, A.: On modelling guidelines: Flowchart patterns for Stateflow.
Softwaretechnik-Trends 21 (2001)

4. Plotkin, G.: A structural approach to operational semantics. Technical Report
DAIMI-FN-19, Aarhus University (1981)

5. Tiwari, A., Shankar, N., Rushby, J.: Invisible formal methods for embedded control
systems. Proceedings of the IEEE 91 (2003) 29–39

6. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8 (1987) 231–274

7. Mikk, E., Lakhnech, Y., Petersohn, C., Siegel, M.: On formal semantics of State-
charts as supported by Statemate. In: 2nd BCS-FACS Northern Formal Methods
Workshop, BCS-EWIC (1997)

8. Gnesi, S., Latella, D., Massink, M.: Modular semantics for a UML Statechart dia-
grams kernel and its extension to Multicharts and branching time model checking.
The Journal of Logic and Algebraic Programming 51 (2002) 43–75
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2 DISI, Università di Genova, Italy

Abstract. Our approach aims at helping to produce adequate require-
ments, both clear and precise enough so as to provide a sound basis
to the overall development. We present a technique for improving use
case based requirements, by producing a companion Formally Grounded
specification, that results both in an improved requirements capture, and
in a requirement validation. The Formally Grounded requirements spec-
ification is written in a “visual” notation, using both diagrams and text,
with a formal counterpart (written in the Casl-Ltl language). The re-
sulting use case based requirements are of high quality, more systematic,
more precise, and its corresponding Formally Grounded specification is
available. We illustrate our approach on an Auction System case study.

1 Introduction

While tools and techniques are now available to support quite efficiently soft-
ware development, one of the most difficult part remains to produce adequate
requirements, both clear and precise enough so as to provide a sound basis to
the overall development.

Formally based specifications are advocated since they lead to precise, unam-
biguous descriptions, but they remain difficult to use and impractical in quite a
number of cases. We think the reason for this is twofold. One point that was often
put forward is the difficulty to write and read such specifications. Another point
we see is that it may be difficult to start with formal specifications while still
working on the requirements (thus, trying to understand what is the problem
about), hence our idea to take advantage of use cases.

Use cases were introduced by Jacobson [10] after the earlier idea of scenar-
ios, which are the different possible courses that different instances of the same
use case can take. Use cases are used to describe/capture the requirements of
software systems, while providing an overall picture of what is happening in the
system. The use case description is textual (it should be “familiar”, easy to read)
and sums up a set of scenarios.

Use cases are popular because they are easy to use and informal, however
“use cases are wonderful but confusing” [7]. A both good and bad thing is that
there is a lot of freedom in what should include a use case description, and
how it should be written. UML [17] proposes a diagram for use cases, states
that descriptions are needed too, and that the sequence of use case activities

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 244–261, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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are documented by behaviour specifications (e.g., with interaction diagrams).
However, examples show that use cases are often imprecise, and also that the
terms used are vague or ambiguous.

Since use cases are written in the early phases of software development, it
is crucial that they should be worked out with a lot of care, so as to avoid to
generate errors that will be difficult and costly to correct further on. Interesting
work is done to propose some guidelines on how to write use case descriptions,
e.g., Cockburn[7] proposes templates for structuring their descriptions. In the
following, we use an adaptation of this template provided by Sendall[14].

Our idea is to find a way to combine both advantages of use cases and of
formal specifications. Here, we present a technique for improving use case based
requirements, developing a companion Formally Grounded specification, that
results both in an improved requirements capture (some requirements may be
updated and some may be new), and in a requirement validation since writing the
specification leads to check that the requirements can be further made explicit
up to a precise specification.

The produced requirements specification is written in a “visual” notation,
using both diagrams and text, with a formal counterpart which is written in the
Casl[11] and Casl-Ltl[12] specification languages.

Being Formally Grounded, our method is systematic, and it yields further
questions on the system that will be reflected in the improved use case descrip-
tions. The resulting use case descriptions are of high quality, more systematic,
more precise, and their corresponding Formally Grounded specification is avail-
able.

In Sect. 2 we shortly sum up our Formally Grounded approach for writing the
requirements specification of a software system (see [6] for a full presentation with
other examples). In Sect. 3 we present our method for improving use case based
requirements using Formally Grounded specifications, and in Sect. 4, we then
show how our method applies to a part of the Auction System case study (the
complete version is in [5]), showing how the starting use case based requirements
have clarified, and how many relevant aspects of the Auction System have been
enlightened, before concluding and discussing some related work in Sect. 5.

2 Our Formally Grounded Approach
for Requirement Specification

Our Formally Grounded specification approach (see [6] for a complete presenta-
tion), aims at helping the user to understand the system to be developed, and
to write the corresponding formal specifications. We also support visual pre-
sentations of formal specifications, so as to “make the best of both formal and
informal worlds”. We developed this method for the (logical-algebraic) specifica-
tion language Casl [11] (Common Algebraic Specification Language, developed
within the joint initiative CoFI1), and for an extension for dynamic systems

1 http://www.cofi.info
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Casl-Ltl2[12]. Hence, for each visual specification, its formal counterpart in
Casl or Casl-Ltl is given.

Our method caters for three different kinds of modelling/specification enti-
ties, (i) a data structure, or data type, (ii) a simple dynamic system, that is a
single dynamic entity, and (iii) a structured dynamic system, that is composed of
mutually interacting dynamic entities; while keeping a common “meta”-structure
and way of thinking.

Each entity considered may be modularly decomposed - so its (sub)parts are
identified-, and is characterized by its constituent features. Its model/specification
consists of a visual presentation of these parts and constituent features, and of
their properties expressed in a natural-language style notation based on an ap-
propriate underlying logic (the variant of logic depends on the kind of entity).

Once the constituent features are identified, we provide guidelines for an
exhaustive search of the properties. To this end, we use a tableau whose cells,
indexed by the pairs of constituent features, should be filled. For each cell we
give a schemata for the relevant properties it should contain, expressing either,
when the two indexes are different, the mutual relationships between the two
features, or, when they are equal, what is known on that feature. This tableau-
filling method ensures that no crucial part of the specification is forgotten, and
results in producing a quite structured/navigable set of properties, which should
be suitable to support evolution.

Data Structures. Data structures are characterized by a set of values, some
constructors to denote those values, and some predicates and operations. Data
structures may be structured, e.g., they may import other data structures. These
features and the imported data structures (the parts) are visually presented as
in the diagram below.
Their properties are expressed in a many-sorted, first order logic [11] with a nat-
ural language-like notation. The tableau-filling technique provides a systematic
way to find the respective properties of constructors, predicates and operations,
e.g., definedness, truth of predicate, etc., see [6].

...

Data Structure Name

Predicates

Constructors

Operations

1

rData

Data

Data Structure

...

System Name

Elementary Interactions
Data

Data State Observers

1

r

Simple Dynamic System

Simple Dynamic Systems. Simple dynamic systems are characterized by their
states and their transitions, where each transition corresponds to a change of
state together with a set of elementary interactions with the external world.
Each elementary interaction is described by a name and possibly by parame-
ters (data values). The states are abstractly characterized by “state observers”,
which, given some parameters, may return some value (operations) or the truth of

2 LTL stands for Labelled Transition Logic[8,3].
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some condition (predicates). Thus, the constituent features of a simple (dynamic)
system are its elementary interactions with the external world and its state ob-
servers. The parts of a simple system are its data structures needed to define
the parameters and the results of elementary interactions and state observers.
The above diagram visually presents which are the subparts and the constituent
features, while the specification of the parts is given separately. These proper-
ties are expressed with a natural language -like notation derived by Casl-Ltl.
Casl-Ltl [12] is a Casl extension based on LTL (Labelled Transition Logic)
[8,3], a branching time temporal (many-sorted, first-order with edge formulae)
logic. This notation uses combinators for expressing that elementary interactions
take place (e.g., e happened), standard logics (if - then -else, not, and, = ,
exists, . . . ), and also temporal combinators (next, eventually, before, in any
case, in one case3).

A transition from one state to another is characterized by elementary inter-
actions, and properties about states and transitions are expressed, e.g., pre- and
post-conditions for elementary interactions, or incompatibilities between them.
Properties for a state observer explore e.g., which elementary interactions may
cause a change in its value, or which are its possible changes. Again, the tableau-
filling technique provides a systematic way to find these properties.

Both diagrams and text have a formal counterpart in the Casl-Ltl lan-
guage [12].

Structured Dynamic Systems. A structured (dynamic) system is a specialized
simple system that is composed of several dynamic systems, its subsystems, which
can in turn be simple or structured. A transition of such a system should reflect
which are the subsystems transitions that occur. Moreover, it is necessary to
describe how the subsystems synchronize.

We present here a simpler version of structured systems (the general case
is given in [6]) that have only simple subsystems (possibly of different types),
where two subsystems may interact only pairwise by performing simultaneously
the same elementary interaction, i.e., the behaviour of these structured systems
is given by transitions made of groups of subsystem transitions, where each
elementary interaction of a subsystem is matched by one of another subsystem.
Furthermore, the considered structured systems are closed, i.e., they have no
interaction with the external world.

A structured system is visually presented by :
(i) a Context View which is a configuration diagram showing the subsystems
(in the Configuration) and their types (the specifications of all those types are
given separately), accompanied by a cooperation diagram showing the cooper-
ations among the subsystems (each cooperation is given by the synchronized
execution of elementary interactions, say EIi).

3 The last two express universal and existential quantification over execution paths.
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...

System Name

Configuration
Syst

Syst

1

r

Configuration Diagram

Id : Syst
EI ... EI

1 k1 Syst Id :k

1 n

Cooperation Diagram

(iii) a Data View which puts together the specifications of all data structures that
are parts of the system and of its subsystems.

To specify the requirements on a software System it is sufficient to specify a
structured dynamic system, whose subsystems are the System itself and all those
entities interacting with it (context entities). The specification of the System will
be the requirements, whereas the specifications of the context entities will show
the assumptions made by the System on the context entities.

3 The Method for High-Quality Requirements

We present in this section our method for producing enhanced requirements. It
is organized in five tasks, and works on use case based requirements while devel-
oping a companion Formally Grounded specification, which results in improved
requirements.

Task 1. Give the use case based requirements on the System following the
method proposed by S. Sendall and A. Strohmeier in [13].

Task 2. Find out which are the external entities playing the roles corresponding
to the various actors (context entities) and determine their types. At this point
we can draw a first version of the Context View (see end of previous section), by
depicting the System and the found context entities together with their types;
the cooperation diagram will have only arcs connecting the System with the
context entities.

Task 3. By examining the use case descriptions, one after the other, look for
elementary interactions and state observers of the System; the former should
model the interactions between the System and the actors appearing in the
use case scenarios, whereas the latter should model information recorded in the
System examined or updated in the use case scenarios. Both of them should be
depicted in the visual presentation of the System specification (together with
the type of their arguments and/or results); the elementary interactions should
also be reported in the cooperation diagram to show which context entities are
taking part in that interactions.

In the meantime put in the Data View any data structure that is used as
an argument or a result by a found elementary interaction or state observer.
The association between use cases and the elementary interactions and state
observers related to it (i.e., which are needed to describe it) should be recorded.
During this task, it is possible to find new entities interacting with the System
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that do not correspond to already known actors; they should be added to the
Context View, together with their specifications. Whenever, there are relevant
assumptions on the context entities they should be made explicit by giving their
Formally Grounded specification (they are just simple dynamic systems).

Task 4. Find all the properties about the System following our tableau-filling
method. When filling a cell related to some constituent features (elementary
interactions and state observers), the descriptions of the associated use cases
should be examined as a source of inspiration. During this task, probably, new
state observers and data structures will be added, and perhaps the parameters
of the existing elementary interactions and state observers may be modified.

Task 5. During the tasks 3 and 4 many questions about the System will arise,
many aspects of the System that need to be investigated will be highlighted,
and many aspects of the System precisely described by the use cases will be
found not convincing. These points may be settled following the usual ways,
e.g., by interacting with the client, if available, by doing more investigation on
the application domain, or by looking at existing similar systems. The produced
Formally Grounded specification should reflect the System where all these points
have been settled.

The original use case based requirement specification should then be revised
so as to be coherent with the Formally Grounded one. In general use cases and/
or scenarios may be added or removed, scenarios may be modified by adding/
removing steps or by making more precise the terminology used to describe
them. In this way the final outcome of our method will be not only a better and
more systematic understanding of the System reflected in a Formally Grounded
specification of the requirements, but also a more precise and sound use case
based specification of the same requirements.

Clearly task 5 will be performed in parallel with tasks 3 and 4.

4 The Auction System Case Study

In this paper we present a part of the application of our method to the case study
of an Auction System proposed in [14] by S. Sendall; the remaining parts are in
[5]. The description of the problem (from [14]) solved by the Auction System is
shown in Fig. 1.

4.1 Auction System Task 1 –
Use Case Based Requirement Specification

Here we report the use case based specification of the requirement on the Auction
System given following the method of [13] as found in [14]. The only difference
with [14] is that we summarize the actors and the use cases by means of a
UML use case diagram, see Fig. 2, below, showing also the “include” relation-
ships among the use cases (depicted by dotted lines). In the following use case
descriptions “**” means that the details about some aspects of the Auction Sys-
tem (e.g., data format or rules to follow to perform some activity) are given in
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Your team has been given the responsibility to develop an online auction system
that allows people to negotiate over the buying and selling of goods in the form of
English-style auctions (over the Internet). The company owners want to rival the
Internet auctioning sites, such as, eBay, and uBid. The innovation with this system
is that it guarantees bid placed are solvent, making for a more serious marketplace.
All potential users of the system must first enroll with the system; once enrolled they
have to log on to the system for each session. Then, they are able to sell, buy, or
browse the auctions available on the system. Customers have credit with the system
that is used as security on each and every bid. Customers can increase their credit
by asking the system to debit a certain amount from their credit card.
A customer that wishes to sell initiates an auction by informing the system of the
goods to auction with the minimum bid price and reserve price for the goods, the
start period of the auction, and the duration of the auction, e.g., 30 days. The seller
has the right to cancel the auction as long as the auction’s start date has not been
passed, i.e., the auction has not already started.
Customers that wish to follow an auction must first join the auction. Note that it is
only possible to join an active auction. Once a customer has joined the auction, (s)he
may make a bid, or post a message on the auction’s bulletin board (visible to the
seller and all customers who are currently participants in the auction). A bid is valid
if it is over the minimum bid increment, and if the bidder has sufficient funds, i.e.,
the customer’s credit with the system is at least as high as the sum of all pending
bids. Bidders are allowed to place their bids until the auction closes, and place bids
across as many auctions as they please. Once an auction closes, the system calculates
whether the highest bid meets the reserve price given by the seller, and if so, the
system deposits the highest bid price minus the commission taken for the auction
service into the credit of the seller (credit internal with the system).
The auction system is highly concurrent–clients bidding against each other in parallel,
and a client placing bids at different auctions and increasing his/her credit in parallel.

Fig. 1. Auction System Problem Description

an accompanying document, not present in [14] and thus not considered here.
Here we do not detail the schema for the use case description followed in this
example and presented in [13]. For lack of room, we present only the main use
case buy item under auction, the other ones are in [5].

Use Case buy item under auction

Intention in Context: The intention of the Customer is to follow the auction,
which may then evolve into an intention to buy an item by auction, i.e., (s)he may
then choose to bid for an item. The Customer may bid in many different auctions at
any one time. (Also the actor Participant means the Seller and all the Customers
that are joined to the auction).
Primary Actor: Customer
Precondition: The Customer has already identified him/herself to the System.
Main Success Scenario: Customer may leave the auction and come back again
later to look at the progress of the auction, without effect on the auction; in this
case, the Customer is required to join the auction again.
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User

buy and sell goods
by auction

Customer

Seller

buy item
under auction

sell item
by auction

increase credit identify userclose auction search for
auction item

Fig. 2. Auction System: Use cases and actors

1. Customer searches for an item under auction (search item).
2. Customer requests System to join the auction of the item.
3. System presents a view of the auction** to Customer.
Steps 4-5 can be repeated according to the intentions and bidding policy of the
Customer
4. Customer makes a bid on the item to System.
5. System validates the bid, records it, secures the bid amount from Customer’s

credit**, releases the security on the previous high bidder’s credit (only
when there was a previous standing bid), informs Participants of new high bid,
and updates the view of the auction for the item** with new high bid to all
Customers that are joined to the auction.

Customer has the high bid for the auction.
6. System closes the auction with a winning bid by Customer.
Extensions:
2a. Customer requests System not to pursue item further:

2a.1. System permits Customer to choose another auction, or go back to an
earlier point in the selection process; use case continues at step 2.

3a. System informs Customer that auction has not started: use case ends in failure.
3b. System informs Customer that auction is closed: use case ends in failure.
4a. Customer leaves auction:

4a.1a. System ascertains that Customer has high bid in auction:
4a.1a.1. System continues auction without effect; use case continues at step 6

4a.1b. System ascertains that Customer does not have high bid in auction: use
case ends in failure.

4||a. Customer requests System to post a message to auction and provides the
message content**.
4||a.1. System informs all Participants of message; use case continues from where it
was interrupted.

5a. System determines that bid does not meet the minimum increment**:
5a.1. System informs Customer; use cases continues at step 4.

5b. System determines that Customer does not have sufficient credit to guarantee bid:
5b.1. System informs Customer; use cases continues at step 4.

6a. Customer was not the highest bidder:
6a.1. System closes the auction; use case ends in failure.



www.manaraa.com

252 Christine Choppy and Gianna Reggio

4.2 Auction System: Task 2

The Auction System has any number of context entities all of the type Person
(anyone accessing the system by Internet). A Person may play three roles: User
(plain Internet user), Customer (a User identified by the Auction System and
connected with it) and Seller (a Customer selling some goods using the Auction
System). We give a first version of the Context View showing the Auction System
and the Persons (the incomplete cooperation diagram just shows that the a
Person interacts only with the Auction System).

Universe

AuctionSystem AuctionSystem

Person P1:Person
......

0 =< n 
Pn:Person

AuctionSystem

Person

4.3 Auction System: Task 3

We examine the various use cases, one after the other, looking for the elementary
actions and the state observers of AuctionSystem, together with the needed data
structures and, possibly new context entities. Note that, for each use case, we
do not give the features used by the included sub-use cases.

We name each elementary interaction made by the Auction System with an
identifier of the form AS . . . , whereas those made by a person context entity
will be named User . . . , Customer . . . and Seller . . . , depending on the
role.

For each use case we produce a fragment of the Context View, of the Data
View and of the specification of the Auction System. At the end, all these frag-
ments will be put together getting the initial view of the structural part of the
Formally Grounded requirement specification of the Auction System. To be able
to support the evolution of the requirements, however, we require to keep track
of the features of the specification (elementary interactions, state observers, and
data structures) that are related with each use case.

Already, during this task many questions about the Auction System may
arise that should be settled with the client; we use the following annotation for
these questions and the way chosen to settle them Q: problem A: settled in this
way.

Use Case buy item under auction. The elementary interactions of AuctionSys-
tem, shown in the first compartment of the above diagram, correspond either
to an interaction made in the use case by the Auction System towards a con-
text entity (e.g., AS Bid Ok for communicating that the placed bid was ok) or
to an interaction received by a context entity (e.g., Customer Bid for a Cus-
tomer placing a bid). Instead, the state observers, in the second compartment,
correspond to information recorded inside the Auction System either tested or
updated during the use case (e.g., credit : the actual credit of a Customer denoted
by an identification; infoAbout : the current information about an auction).



www.manaraa.com

Improving Use Case Based Requirements 253

AuctionSystem

is_Identified(Identification,Session_Key)
credit(Identification): Int
infoAbout(Auction_Id): Auction_Info
joined(Session_Key,Auction_Id)

CUSTOMER_JOIN_AUCTION(Session_Key,Auction_Id)
AS_S HOW_AUCTION(Session_Key,Auction_View)
CUSTOMER_BID(Session_Key,Auction_Id,Int)
AS_B ID_OK(Session_Key,Auction_Id,Int)
CUSTOMER_LEAVE_AUCTION(Session_Key,Auction_Id)
AS_B ID_TOO_LOW(Session_Key,Auction_Id,Int)
AS_NO_CREDIT_FOR_BID(Session_Key,Auction_Id,Int)
CUSTOMER_POST_MESSAGE(Session_Key,Auction_Id,Message)

AS_S END_MESSAGE(Address,String) 

The Context View, see below, shows which context entities take part in the
use case (e.g., the person), and which are the interactions of the Auction System
with them (e.g., Customer Join Auction is an interaction between Auction
System and the person).

Universe

AuctionSystem

Person

Mail

Mail

P1:Person ......
0 =< n 

Pn:Person

AuctionSystem

AuctionSystem

Person

CUSTOMER_JOIN_AUCTION
AS_S HOW_AUCTION
CUSTOMER_BID
AS_B ID_OK
CUSTOMER_LEAVE_AUCTION
AS_B ID_TOO_LOW
AS_NO_CREDIT_FOR_BID
CUSTOMER_POST_MESSAGE

Mail

AS_S END_MESSAGE

Q: This use case requires that the Auction System informs the participants to an
auction about various facts (e.g., when there is a new higher bid or a message of
another participant), but nothing is said on how that will be performed. In the
description of the use case close auction there is a note saying that this is an open
issue and that it will be likely made by email. A: It is assumed the existence of
an external mail service, not further detailed, able to deliver messages to User
identified by some kind of address (because the client will decide in future among
email, SMS, messaging systems). The mail service will be then a NEW context
entity (and a new secondary actor).

The Data View shows all the data used as parameters by the found elemen-
tary interactions and state observers, and which predicates/operations we need
to perform all the calculations over them required by the use case. For exam-
ple, Auction Info, the information about an auction, has an operation, view,
for recovering a view of the auction to be shown to its participants, whereas
Auction View is not further detailed.

address: Address

Registration_Info

Address Message

Session_Key

Auction_Id Auction_View

IdentificationAuction_Info

id: Auction_Info -> Auction_Id
view: Auction_Info -> Auction_View
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4.4 Auction System: Task 4

This task consists in finding the properties about the Auction System by filling
the tableau generated by the elementary interactions and state observers found
in the previous task, and by completing the specifications of the data structures.
Clearly, while doing this activity, new state observers may be added, which will
have then to be introduced in the tableaux and considered while looking for
the properties. The original use case based specification may be modified by
reflecting the better insights on the Auction System gained while looking for
properties.

Here we show only some properties, together witht he arisen questions, about
a few elementary interactions and state observers needed for the use case buy item
under auction; each property is both expressed in our notation, and accompanied
by a comment. The full set of the properties can be found in [5].

Elementary Interaction. Customer Join Auction Looking for the pre/
postconditions of Customer Join Auction for filling the tableau cell whose
both indexes are that elementary interaction, we found the following unclear
points about the Auction System.
Q: Does the use case search item ends having selected one auction or one item?
This is relevant because there may be many different auctions for the same item,
e.g., a used car. The description of search item suggests some auctions, whereas
that of buy item under auction suggests one item. A: The search item ends with
some selected auctions, as in other auction systems.
Q: Can an auction selected by the search item be in any status (e.g., closed or
not yet started)? A: Yes, and this is quite sensible, since a Customer may be
interested in knowing that some item has been sold in the past and at which price,
or which are the current starting prices of some items, or that some items will
be soon auctioned.
Q: Can a Customer try to join a closed or not-started auction? A: No, the
Auction System should not provide this possibility, and answers with an error.

The above problems lead us to revise the use case search item. As a result,
we now have the NEW browse auctions use case ending with a selected group of
auctions. Moreover, the use case buy item under auction may start only when there
is one selected auction that is active. Then, we introduce a new state observer
selected Auctions that associates with each identified Customer (referred to by
a session key sk) the identities of the currently selected auctions.
Q: Can a Customer join an auction to which (s)he is already joined? A: Yes,
since there is no problem. A better choice may be that the Auction System sends
a warning to Customer.

If a Customer joins an auction, then
(s)he is identified,
Customer has selected one auction that is active;
and after (the Customer has joined that auction, and
the Auction System shows to her/him all the detail of the selected auction)
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if Customer Join Auction(sk,aid) happen then
exists id :Identification s.t. is Identified(id,sk) and

status(infoAbout(aid)) = active and
joined nxt(sk,aid) and
in any case next AS Show Auction(sk,view(infoAbout(aid))) happen

Elementary Interaction. AS Bid Ok While looking for its postcondition
which concerns also the future behaviour of the Auction System after having
performed the elementary interaction we detected the following problem.
Q: Is it true that a Customer joined to an auction is informed twice of each
new bid, once by receiving a view of the auction with the new bid and once by
some kind of message? Moreover, if a Customer places a bid, and after leaves
the auction, will (s)he be ever informed of a new higher bid? More generally,
which is the intended duration of an auction? a few hours when the participants
bid many times, and continuously look at the current view of the auction? or
several days, when the participants from time to time place their bids and look
at the situation of the auction? A: The client decided that an auction handled
by the Auction System should last a few hours with all participants logged on;
thus there is no need to inform the joined customers and the seller of the various
bids, because they continuously examine the current view of the auction that the
Auction System keeps updated.

If the Auction System informs a Customer that her/his bid is ok, then
the Customer placed such bid,
(s)he had sufficient credit, and the bid met the minimum increment; and after

the bid is recorded,
the amount is secured by the Customer credit,
the security on the previous high bid is released (if any), and
the updated auction view is sent to all the Customers joined to the auction.

if AS Bid Ok(sk,aid,i) happen then
in any case before Customer Bid(sk,aid,i) happened and
i≤ credit(identityOf (sk)) and
ibid Ok(infoAbout(aid),i) and
high Bidder(infoAbout nxt(aid)) = identityOf (sk) and high Bid(infoAbout nxt(aid))
= i and credit nxt(identityOf (sk)) = credit(identityOf (sk)) - i and
(if is defined (high Bidder(infoAbout(aid)) ) then

credit nxt(high Bidder(infoAbout(aid))) =
credit(high Bidder(infoAbout(aid))) + high Bid(infoAbout(aid))) and

for all sk1:Session Key
• if joined(aid,sk1) then AS Show Auction(sk1,view(infoAbout(aid)))

State Observer. credit The first version of the property about the decreasing
of the credit (part of the tableau cell indexed by credit :credit) based on what
is written in the various use case descriptions is the following, and points out a
problem.

If the credit of a Customer decreases, then the Customer made a bid in an auction.
if credit nxt(id) = credit(id) - i and i> 0 then exists sk :Session Key, aid :Auction Id

s.t. AS Bid Ok(sk,aid,i) happened and is Identified(id,sk)



www.manaraa.com

256 Christine Choppy and Gianna Reggio

Q: It is true that a Customer using the Auction System only for selling items
will be never able to collect her/his money? Moreover, can a buying Customer
recover her/his money when (s)he is no more interested in buying? A: Yes;
thus we have to add a NEW use case decrease credit for allowing a Customer to
recover her/his credit.

The new version we propose is then

If the credit of a Customer decreases, then
either the Customer asked the Auction System to decrease it, (NEW)
or the Customer made a bid in an auction.

if credit nxt(id) = credit(id) - i and i> 0 then
exists sk :Session Key, ctdCredit Transfer Detail s.t.

AS Decreased Credit(sk,ctd) happened and
i= amount(ctd) and is Identified(id,sk)

or exists sk :Session Key, aid :Auction Id s.t.
AS Bid Ok(sk,aid,i) happened and is Identified(id,sk)

4.5 Auction System Task 5 –
New Use Case Based Requirement Specification

Here we report only the new use case diagram and the new description of the
use case buy item under auction, see [5] for the complete new use case based re-
quirements. Two new use cases were identified when following our approach (see
the previous section), browse auctions (thus, point 1. was removed from the buy
item under auction description below) and decrease credit. The questions brought
up by our work led to several modifications, e.g., the work on AS Bid Ok in
Sect. 4.4 led to remove one part of point 5. in the new buy item under auction
description below.

User

buy and sell goods
by auction

Customer

Seller

buy item
under auction

sell item
by auction

increase
credit

identify user
close auction

browse
auctions

decrease
credit

Use Case buy item under auction

Intention in Context: UNCHANGED
Primary Actor: Customer
Precondition: The Customer has already identified him/herself to the System
NEW: and selected one active auction.
Main Success Scenario: UNCHANGED
REMOVED: 1. Customer searches for an item under auction (search item).
2. Customer requests System to join the selected auction.
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3. System presents a view of the auction** to Customer.
Steps 4-5 can be repeated according to the intentions and bidding policy of the
Customer
4. Customer makes a bid on the item to System.
5. System validates the bid, records it, secures the bid amount from Customer’s

credit**, releases the security on the previous high bidder’s credit (only when there
was a previous standing bid), (REMOVED: informs Participants of new high bid,)
and updates the view of the auction for the item** with new high bid to all
Customers that are joined to the auction. Customer has the high bid for the
auction

6. System closes the auction with a winning bid by Customer.
Extensions:
UNCHANGED: 2a, 5a, 5b, 6a
3a. NEW: The Customer is the Seller of the auction; System informs Customer that

(s)he cannot join the auction. Use case ends with failure.
REMOVED: 3a. System informs Customer that auction has not started: use case

ends in failure.
REMOVED: 3b. System informs Customer that auction is closed: use case ends

in failure.
4a. Customer leaves auction:

4a.1a. System ascertains that Customer has high bid in auction:
4a.1a.1. System continues auction without effect; use case continues at step 5

4a.1b. System ascertains that Customer does not have high bid in auction: use
case ends in failure.

4||a. Customer requests System to post a message to auction and provides the
message content**.
4||a.1. MODIFIED: System updates the view of the auction with the added message
to all
Customers that are joined to the auction; use cases continues from where it was
interrupted.

5 Conclusion and Related Works

In this paper we have proposed a method to review use case based requirements
for a system by building a companion Formally Grounded specification. As a re-
sult the initial requirements are examined in a systematic way through the study
of the various aspects of the considered system, modelled in terms of elementary
interactions and state observers. For example, the possible interferences among
different use cases may be revealed (elementary interactions relative to different
use cases may yield a change of the same state observer), the communications
between the system and the actors become more precise (they are modelled by
elementary interactions, which require a precise definition of their parameters),
the secondary actors (that help the system to satisfy the primary actors goals)
are discovered and their features are clarified (all entities interacting with the
system must be defined and modelled).

The produced Formally Grounded specification has a user-friendly notation
(diagrams plus textual annotations in a natural-like language), and so it could
be used as the requirement document. The proposed method also requires to
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update the original use case based requirements whenever a new aspect of the
system is brought to light, thus, at the end, new improved use case based require-
ments are available. In the meantime, the formal Casl/Casl-Ltl specification
corresponding to the Formally Grounded one is also available, e.g., for formal
analysis (but we have not yet investigated this point).

We think that starting to build directly the Formally Grounded specification
from the description of the problem may be not as much as effective as the
proposed combination of use cases and Formally Grounded specification, because
the ingredients of the Formally Grounded specification (elementary interactions
and state observers) are in some sense at a finer grain than the functionalities
of the system, and so may be difficult to find by just considering the problem.

As an example, we have used our method on a medium-size case study, an
electronic auction system. For lack of room, we have described here only parts
of the various tasks and shown only some fragments of the produced artifacts;
the complete development and the resulting artifacts can be found in [5]. The
advantages shown by our method on this case study seem quite positive. Indeed,
we have detected many problematic or not completely clarified aspects in the
original use case based requirements. Among them, we recall (i) explicit auctions
browsing functionality (blurred in the initial requirements: the information on
all auctions were available but not shown), (ii) the fact that the auctions should
be performed in a chat-like way, (iii) discovered the need for a decrease-credit
functionality, (iv) made explicit that when a Customer unregisters any left credit
goes to the Auction System owner.

Moreover, we would like point out that we did not write the starting use case
requirements (given by Sendall[14] who, as of now, has no relationship with our
group and our method), and we found them quite accurate, presented using a
well-organized template and produced following a good method.

Concerning the possibility to use effectively the proposed method we would
like to make the following positive points.

– It is possible, using common existing technologies, to build software tools to
support the construction of the Formally Grounded specification, not only a
graphical editor, but also wizards guiding the properties search.

– Each use case is linked with the elementary interactions, the state observers
and the data structures used for its specification. This, together with the
precise structure of the properties, may also help to support the evolution of
the initial requirements; indeed a modification in one use case may be only
reflected in a precise part of the associated Formally Grounded specification.

– The inspection and revision of the requirements proposed by our method
concern only the nature of the system to be developed, and does not require
to make any choice about the technology and methods that will be used to
realize the system; thus it may be used in combination with many different
methods.

In the literature there are other approaches to build a formal specification
of the requirement of a system, but in general they do not aim at producing
an improved non-formal specification. Among them, we recall the nice work of
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A. van Lamsweerde and his group[18], which offers a way to formally specify goal-
oriented requirement specifications, and then to analyze them by means of formal
techniques. R. Dromey[9] proposes to use “Behaviour Tree”, a formal-visual
notation to specify the requirements, then the resulting requirement specification
will be used to derive the architectural structure of the system. Our approach, in
the line of the well-founded methods [2], uses the underlying formal foundation
to get a rigorous method to precisely specify the requirements, with the aim of
achieving a careful inspection and a kind of validation of those requirements.

One of the authors, together with E. Astesiano, proposed another use case
based method for the precise specification of the requirements [4], but using the
(non-formal) UML statecharts as a notation to describe the use cases. However,
because it does not offer a systematic way to analysis the System under different
viewpoints, some aspects of the System captured by our method may not come
under light.

We would like also to quote the work by S. Sendall and A. Strohmeier [15,16]
who promote the use of operation schemas (pre- and postconditions written in
OCL) and system interface protocols (UML state diagrams) to complement use
cases; our goal is different, that is to improve the use case based requirements.

Inspection techniques for improving the quality of a requirement specification
(quite popular in Software Engineering practice, see e.g., [1]) are either based
on ad hoc techniques or on check-lists. The main differences with our approach
is that our “inspection” based on the underlying formal specification and the
tableau-filling technique leads to a more systematic and precise examination of
the requirements, whereas standard techniques lead to more generic checking.
For instance, compare:
“find and list all the ways the credit state observer may be updated in the various
scenarios of all use case” (which helped to discover the lacking functionality of
credit decreasing),
with
“Is there any missing functionality, that is, do the actors have goals that must
be fulfilled, but that have not been described in use cases?” taken from [1]’s
check-list.
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Abstract: The GOPCSD (Goal Oriented Process Control Systems Design) tool 
is an integrated environment, where the process control systems engineer can 
construct, import, check, reason about, modify, validate requirements specifica-
tions and generate in the B specification language a formal specification of such 
process control requirements. Borrowing from the KAOS method, the 
GOPCSD tool adopts the goal-oriented hierarchy concept to enable easy tracing 
of the user needs to the requirements level, as well as the requirements to the 
design specification level. The tool offers a library and formal and informal 
checks and tests to aid correction and enhancement of the requirements; in ad-
dition, the normal systems engineer can use the tool effectively and automati-
cally generate a B formal specification, thus not demanding a high-level of 
knowledge about the sophisticated mathematics supporting formal methods 
like B. 

1   Introduction 

In reactive systems, such as process control systems, where safety and security are 
considered important aspects, along with the system’s operational constraints, the B 
formal method has been demonstrated to provide effective support at the early design 
stages. However, a requirements stage before the formal method is still needed, con-
cerned with the construction, reuse, correction, modification, testing and enhance-
ment of the requirements.  

In addition, tracing the user needs to the requirements level, as well as tracing each 
requirement to the design specification level decreases the gap between the user’s 
perspective and the specification level. This motivated us to adopt the goal-oriented 
requirements analysis method of KAOS [3] as a starting point. The goal driven re-
quirements analysis method of KAOS uses goal-models as the formal model to struc-
ture the software requirements gradually and precisely; the main goals of the goal-
model usually represent the user needs, while the low-level goals will be translated to 
specification building blocks. This ensures the traceability goal as well as the under-
standability of the goal-model by the user.  
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Thus, we were motivated to start the requirements analysis as close to the view of 
the systems engineer as in [8] and, furthermore, to extend the formalisation, via an 
automated tool, to the B specification level [1], as in [6, 9]. In this paper, we intro-
duce the GOPCSD tool that serves as a front end for the B toolkit [7] or other envi-
ronments that adopt B, to hide the mathematical details of the B method and to allow 
the systems engineer to focus on providing precise and formal requirements, while 
preparing the stage for the software engineer to use the generated B specification to 
produce code that is not only correct with respect to the high-level B specifications, 
but is also much more likely to satisfy the systems engineer’s stated requirements. 

2   The GOPCSD Tool 

The GOPCSD tool [2] (as shown in fig.1) is designed to analyze the requirements of 
process control systems and automatically generate B formal specifications. To build 
an application within the tool, there are three main phases. In the first phase, the re-
quirements can be constructed using different (process control specific) entities 
(components, agents, variables, goals, goal-models, and variable types). The second 
phase checks the consistency, completeness, reachability, and the validity of the goal-
model. The tool suggests different goal-model modifications to resolve goal-conflict 
or unreachable goals, avoid obstacles, or complete the requirements. Thus, the first 
and second phases can be regarded as a feedback loop to devise consistent and com-
plete requirements. Finally, after the goal-model is considered satisfactory, the appli-
cation proceeds to the third and final phase producing automatically the software 
specification through translating the goal-model to a B specification. The GOPCSD 
tool hides the details of the B language from the systems engineer, and increases the 
separation of concerns between the software and systems engineers. 

Although the GOPCSD method is based on KAOS, there are some significant ad-
aptations of the KAOS method to fit with the nature of Process Control Systems and 
to enable an automatic phase to generate B specifications to be added. The tool re-
stricts the variables of the application to have finite domain in order to enable feed-
back for the completeness, consistency and validity of the requirements. 

2.1   GOPCSD Tool Support for Reusability 

Since the main target of the GOPCSD tool is process control systems, this motivates a 
need for building systems from sub-systems and components. Therefore, the 
GOPCSD tool supports reusability in building the goal-models based on two basic 
concepts: similar applications are built of the same kinds of physical components, and 
similar applications can have similar high-level goals, even if they have different 
components.  

The first concept suggests a library for the frequently used components with their 
associated low-level goal-models to enable the user to import them into his/her appli-
cations. The second concept recommends high-level goal-model templates that can be 



www.manaraa.com

The GOPCSD Tool: An Integrated Development Environment      263 

 

used in similar systems with possibly different component details. For example, a 
production cell with a single press can have some of the same high-level goals as a 
double-press production cell. 

2.2   Constructing Goal-Models (Phase I) 

The GOPCSD method mainly depends on reusing elements of the library to increase 
the reusability and the maintainability of the developed applications. Thus, the design 
starts by importing components from the library in addition to the high-level goal-
model templates. After the systems engineer decides on the components and/or the 
high-level goal-model templates to be imported, a re-naming and/or mapping process 
can take place in order to change the components’ or the templates’ variables and/or 
agents’ names into the corresponding ones to be used in the new application. 

Then, the systems engineer formulates the application’s main goals; these gener-
ally can be considered as medium-level goals between the high-level goal-model 
templates and the low-level component goal-models. The main goals can be placed in 
separate empty goal-models until the user links them by combining them into a 
higher-level goal. The process of producing a single complete goal-model requires 
the user to link the high-level goal models, the main goals and the low-level goal-
models of the components. 

 

 

Fig. 1. The desktop of the GOPCSD tool, showing the requirements elements (components, 
variables, agents and goal-models lists) to the right and a goal-model to the left. 

2.3 Checking the Goal-Model (Phase II) 

The GOPCSD tool enables the user to perform various checks and tests to enhance 
the requirements and to detect any incorrect or undesirable behaviours implied by the 
requirements, as early as possible. The tool offers the following checks:  
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Checking Correctness of Goal-Models. There are some essential constraints the tool 
enforces on the goal-models in order to build correct B specification (and correctness 
is defined with respect to these constraints and those pertaining to the structure of 
goal trees). These constraints address the basic definitions of terminal goals, variable 
controllability, and refinement patterns. This utility will highlight the goals that vio-
late the constraints. 
Reasoning and Investigation Utilities. The GOPCSD tool enables the user to reason 
about the how and why of the different goals of the goal model. Reasoning how to 
achieve one goal lists the sub-goals of this goal and their sub-goals; while reasoning 
why to achieve one goal ascends the goal-model level by level listing the details of 
the ancestor goals. The reasoning utility can be regarded as an informal early level of 
checking to validate parts of the goal-model, on the one hand; on the other, it can be 
used to guide the user to elicit new goals to complete the construction of the goal-
model, either upward answering why or downward answering how [3]. Another util-
ity offered by the tool is highlighting the goals containing a specific variable or the 
goals that are affected by a specific agent. This utility is similar to dependence 
graphs, or tracing utilities, which can be helpful to judge variable and agent coupling.  
Checking the Reachability of the Requirements. Another important check that is 
helpful to amend the requirements is detecting unreachable goals. The user usually 
errs in specifying the conditions of some of the goals or locates them in inappropriate 
positions where they will never be activated. Thus, the goal-model can be valid, com-
plete and consistent but some of its goals’ pre-conditions can be unreachable. 
Checking Completeness. Completeness means that for each combination of the 
application’s variables there is a defined action(s) to be taken. Some incompleteness 
can occur as a result of ignoring unexpected variable combinations or ignoring vari-
able combinations under specific situations. The systems engineer may choose not to 
include such combinations for normal operation, but during the application execution 
they might occur and produce a hazard or incorrect operation. 
Checking Obstacles. An obstacle is a sequence of events that can occur during ap-
plication run-time and can obstruct some of the goals from being achieved [4]. Obsta-
cle analysis can be performed at the lowest level within the complete goal-model, 
when all the terminal goals have a complete formal description. Each formal descrip-
tion of a terminal goal will be negated in turn and the user attempts to find cases that 
validate the negated conditions and, hence, the goal-model can be modified in order 
to prevent the obstacles from occurring or to attenuate their effects. 
Checking Goal Conflict. Conflict arises when two or more goals prescribe the per-
formance of inconsistent actions under the same conditions [5]. Conflicts are checked 
by comparing the conditions for goals that assign different values to the same vari-
ables. When a goal-conflict is detected, the tool suggests that one of the conflicting 
goal’s formal pre-conditions should be modified. This utility can be employed to 
bring together the various process control requirements aspects, such as safety, secu-
rity and productivity. In case of conflicts, the GOPCSD tool will suggest to modify 
the operational goals in order to pay attention to the various issues. 
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Animating Goal-Models. The systems engineer usually needs to validate the re-
quirements. Such validation should emulate the execution of the controller during 
run-time. The GOPCSD provides different utilities, such as saving, loading and exe-
cuting event lists, emulating output delay and faults, and displaying the description of 
the activated goals, cycle by cycle. This validation utility provides the user with an 
easy to use means of understanding the requirements model. In addition, it guides the 
user to fine-tune the goal-model of the application to enhance the requirements and 
remove bugs as early as possible. 

3   Translating Goal-Models to B Machines (Phase III) 

After the user validates the goal-model and approves the description of the controller, 
the tool translates the corrected requirements into formal specifications represented as 
B machines. The translation from goal-models to B specifications consists of two 
steps, as follows: 

3.1   Splitting Compound Goal-Models 

Alternative refinement is used to enable the user to express more than one alternative 
solution for the control application. To reduce the effort expected form/by the user, 
the shared parts of the compound goal-model are available for each version. How-
ever, to build controller specifications, only a single solution can be used. Thus, the 
translation into B specifications starts by splitting the goal model if it has alternative 
refinement sites.  

3.2   Translating Goal-Models to the B AMN Language 

The complete goal-model, which represents a separate solution, will be automatically 
translated by the tool to a main controller B machine and a number of actuator B 
machines, depending on the number of the active agents used within the goal-model. 
In addition, the definitions of the various data types of the variables will be collected 
in a data type B machine. The different values that can be assigned to the output vari-
ables will be represented as operations of the actuator machines. The terminal goals 
of the goal-model will be grouped by the output variable they control and will be 
translated to parallel parts of one operation of the main controller machine; this will 
ensure that the controller can manipulate the output variables in parallel.  
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Abstract. Software debugging is the activity of locating and correcting erroneous
statements in programs. Automated tools to locate and correct the erroneous state-
ments in a program can significantly reduce the cost of software development. In
this paper, we present a new approach to locate and correct an erroneous state-
ment in a function. We assume the correct specification of the erroneous function
is available in the form of preconditions and postconditions of the function. Our
approach combines ideas from software testing and weakest preconditions used
in correctness proof methods to locate a likely erroneous statement. We have im-
plemented our approach and conducted experiments with several small programs.
In our experiments, our approach was able to locate the erroneous statements in
a large number of cases. Our preliminary experimental results show that our ap-
proach has potential for development of an automated bug location and correction
tool.

Keywords: Fault location, software testing, weakest precondition, postcondition.

1 Introduction
Software debugging is the process of locating and correcting erroneous statements in a
faulty program. It is an expensive and challenging activity requiring understanding of
the program and is often done manually by the programmers. Automated tools that help
the programmers in locating the erroneous statements can significantly reduce the cost
of software development.

The program slicing based approaches [1,11,15] extract a subset of program state-
ments that can effect the values of variables at the point where a fault is manifested. A
novel approach to automatically isolate cause-effect chains, that have higher precision
than static or dynamic slices, has been developed in [19,9]. Approaches based on dy-
namic invariant detection [8,16] to give warnings about program anomalies have also
been developed. All these approaches assist the programmers by narrowing down the
search for erroneous statements to a subset of program statements. However, they do not
generate the exact modifications to be made to the program to automatically correct the
errors. To determine the exact nature of an error and check whether it lies in the localized
program statements, the programmers have to modify the program and re-execute the
program until they obtain correct output.

In this paper, we develop an approach to automatically localize and correct an er-
roneous statement in a faulty function. Our approach assumes that the precondition and
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the postcondition of the function are available as first order theory formulas (FOT) [6]
formulas over a finite domain. We also assume that a test suite for a given test adequacy
criteria for structural testing of the given function is available. In our current work, we
also assume that there is at most one error statement in the faulty function to avoid
interaction among multiple errors. Our method takes as input an error trace generated
by executing some failed test case in the test suite of the function. The notion of weakest
precondition [5,7] of a statement in a program for a given postcondition of the program
has been used for proving program correctness. In this paper, we define a notion of
path-based weakest precondition for statements along a path in a program. Using this,
we also define the notions of a hypothesized program state and an actual program state
at every point along the error trace. Our algorithm traverses the statements along the
trace in reverse order of execution and compares these states at each point along the
trace to detect an evidence for a likely faulty statement. It then generates modifications
to the function to remove this evidence. The algorithm terminates if a modified function
successfully executes all the test cases in the test suite. If all the statements along the
current error trace have been processed and the algorithm fails to correct the error, an-
other error trace (corresponding to another failed test case in the test suite) is tried until
all the error traces have been attempted.

We have implemented our algorithm and conducted experiments with several small
programs by introducing one error at a time. In our experiments, our technique was able
to correct errors such as a wrong relational operator used in a branch predicate, wrong
variable used in a branch predicate, wrong variable used in an assignment statement,
incorrect constant used in an assignment statement and some cases of incorrect number
of loop iterations. Our approach requires normal termination of the program execution
for the input that generated the error trace so that the postcondition can be evaluated for
this input. Therefore, it is not able to correct errors that result in a non-terminating loop
or result in segmentation faults such as due to illegal memory access.

The organization of this paper is as follows. The terminology used and the details
of our approach are explained in section 2. The steps of our algorithm are described in
section 3. The experiments are presented in section 4, the related work is discussed in
section 5 and conclusions are mentioned in section 6.

2 Our Approach

The problem addressed in this paper can be stated as follows:

Problem Statement: Given a faulty function F with a single error statement, a test suite
Ts for F , an error trace of F generated by Ts, and the precondition and postcondition
of F in the first order predicate logic, localize and modify a statement in the error trace
so that the modified function is able to pass the test cases in Ts.

First, we execute F with Ts and identify the set of error traces i.e., the set of exe-
cution traces for which the postcondition of F evaluates to False. We select any one of
these error traces for locating and correcting the error in the function. We also express
the postcondition in disjunctive normal form using the input for the trace. Having the
postcondition in disjunctive normal form, we only need to guarantee the validity of one
conjunction in the postcondition to satisfy the postcondition. We select any one of the
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conjunctions in the evaluated postcondition for the error trace for locating and correcting
the error in the error trace and call it postcondition conjunction R. If the algorithm is un-
able to fix the error for given trace with the selected postcondition conjunction, another
conjunction in the postcondition conjunction is selected. The steps of our algorithm are
shown in 2. Next, we describe our representation of an error trace. We illustrate our
approach with a faulty program Max to compute a maximum element in an unsorted
array of integers, shown in Figure 1(a). In this program, incorrect relational operator is
used in line 4. An error trace with the input a[]= (-2, 5, 3), n=3 is shown in Figure 1(b).

int Max(int a[], int n){
int i, s;
precondition n>0
1: i = 1;
2: s = a[0];
3: while (i < n) {
4: if (s ≥ a[i])
5: s = a[i];
6: i = i + 1;

}
return s;
postcondition
∀i:0≤i<n, s≥a[i] ∧
∃i:0≤i<n, s=a[i]

}

precondition (n>0)
<i, line#> Stmti

< 1,1> i=1
<2,2> s=a[0]
<3,3> (i-n<0)
<4,4 > (s-a[i=1]<0)
<5,6> i=i+1
<6,3> (i-n<0)
<7,4> (s-a[i=2]<0)
<8,6> i=i+1
<9,3> (i-n≥0)

postcondition
((s-a[0]≥ 0)T ∧(s-a[1]≥ 0)F ∧(s-a[2] ≥ 0)F ∧ (s-a[0]=0T ) ∨
((s-a[0] ≥ 0)T ∧(s-a[1]≥ 0)F ∧(s-a[2]≥ 0)F ∧ (s-a[1]=0F ) ∨
((s-a[0]≥0)T ∧(s-a[1]≥ 0)F ∧(s-a[2]≥ 0)F ∧ (s-a[2]=0)F )

Fig. 1. (a) A Program Max 1.(b) A trace of Max with the input a[]=(-2, 5, 3), n=3.

2.1 Representation of an Error Trace

An error trace is the execution history of a failed test case.We define it as a sequence of ex-
ecuted instances of statements (assignments, branch predicates, input/output statements)
and evaluated precondition and postcondition of the function. We define an execution
point i, (i = 1, n) in a trace as the entry of the ith statement instance executed in the
above sequence. We use bottom to denote the exit point of the last (nth) statement in the
trace.

We use a tuple < i, j > to indicate an instance of an executed statement in an error
trace, where i is the execution point of the statement instance in the error trace and j is the
line number of the statement in the program. For simplicity, we assume that there is only
one statement at a line in the program. Since the execution point of a statement instance
is unique in a trace, we denote a statement instance at < i, j > as Stmti. An error trace
generated by executing the function in Figure 1(a) with the input a[]=(−2, 5, 3), n=3 is
shown in Figure 1(b).

Representation of Branch Predicates. We define an atomic predicate as having the
form (expr relop const), where expr is an arithmetic expression without a constant
term, relop is a relational operator (<,≤, >,≥, =, �=) and const is a constant term.
At present, we have considered the branch predicates that use only real, integer and
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character data types. The branch predicates along the trace are represented in the above
form. For example, the while predicate (i<n) at line 3 in Figure 1(a) is formalized
as Stmt3:(i-n<0) in the error trace in Figure 1(b). The compound predicates are
represented in disjunctive normal form i.e., one that has the form E = e0 ∨ · · · ∨ en,
where each ei has the form g0 ∧ · · · ∧ gm and each predicate gi is an atomic predicate
represented in the above standard form.

During program execution, the values of the array indices are known. We denote
an array element in the trace as array[idx = const], where array is the name
of the array, idx is the expression for the index of the array element in the program,
and const is the value of idx for the input used for the trace. In addition, if a branch
predicate evaluates to true, then it is shown in the trace as it is; otherwise, its negation,
which must be true, is shown in the trace. For example, let us consider the control
statement if (s ≥ a[i]) at line 4 in the example program in Figure 1(a). This
statement is executed at position 7 in the trace in Figure 1(b). At that point, the value
of (s ≥ a[i]) is False. Thus, its negation is shown in the trace in Figure 1(b). The
corresponding statement instance in the trace is Stmt7: (s-a[i=1]<0). Next, we
describe our representation of precondition and postcondition of a program.
Representation of Precondition and Postcondition. Using the program input for the
error trace, we transform the precondition and postcondition of the program into the
disjunctive normal form. The transformation is done in two steps. First, during the
execution, the precondition and postcondition are transformed into quantifier-free pred-
icates. Using the program input for the error trace, the universal quantifier ∀ is expanded
as a conjunction and the existential quantifier ∃ is replaced with a disjunction. For ex-
ample, for n = 3, the quantifier ∀ i : 0 ≤ i < n, s ≥ a[i] in the postcondition of
the program in Figure 1(a) is expanded as (s ≥ a[0]) ∧ (s ≥ a[1]) ∧ (s ≥ a[2]). An
existential quantifier is expanded as a disjunction. For example, for n = 3, the quantifier
∃ i : 0 ≤ i < n, s = a[i] in the postcondition of the program in Figure 1(a) is expanded
as (s = a[0]) ∨ (s = a[1]) ∨ (s = a[2]). The second step is to convert quantifier-free
precondition or postcondition into the disjunctive normal. For the trace in Figure 1(b),
we obtain the postcondition in the disjunctive normal from as below.

((s − a[0] ≥ 0) ∧ (s − a[1] ≥ 0) ∧ (s − a[2] ≥ 0) ∧ (s − a[0] = 0))∨
((s − a[0] ≥ 0) ∧ (s − a[1] ≥ 0) ∧ (s − a[2] ≥ 0) ∧ (s − a[1] = 0))∨
((s − a[0] ≥ 0) ∧ (s − a[1] ≥ 0) ∧ (s − a[2] ≥ 0) ∧ (s − a[2] = 0))

We classify a predicate that evaluates to true with the given input as a positive
predicate and a predicate that evaluates to False with the given input as a negative
predicate. We use a superscript on each atomic predicate in the postcondition to show
the truth value of that predicate for the given input. For example, in the trace in Figure
1(a) (s − a[0] ≥ 0)T means that this predicate evaluates to true and (s − a[1] ≥ 0)F

means that it evaluates to False. Note that all the branch predicates in the trace after their
representation in the standard from are positive predicates.

2.2 Weakest Precondition and Path-Oriented Weakest Precondition

Given a program S and the postcondition R, the weakest precondition wp(S, R) repre-
sents the set of all states such that the execution of S begun in any of them is guaranteed
to terminate in a state satisfying R [5,7].
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In this paper, we define a weakest precondition semantics with respect to a trace, which
we call as path-based weakest precondition, or pwp for abbreviation.
Definition: Given an execution trace T and the postcondition R of a function F , the
path-based weakest precondition denoted as pwp(T , R) is the set of all states such
that an execution of F , that follows T , begun in any of them is guaranteed to terminate
in a state satisfying R.
The control flow in a trace is fixed so only the data dependences affect the value of
output. Assume that evaluation of control statements does not have any side effects, we
formally define pwp as below.

pwp(x = a, R) = Rx→a, where x → a means substituting every occurrence of x in R with a

pwp(B, R) = R, where B is a branch predicate
pwp(C; D, R) = pwp(C, pwp(D, R))

Given a subtrace T<i,n> of T (from execution point i to the end of trace) and a post-
condition R, we denote pwp(T<i,n>, R) as Ri. For example, let us consider the trace in
Figure 1(b) and let assume that the postcondition conjunction R be

((s− a[0] ≥ 0) ∧ (s− a[1] ≥ 0) ∧ (s− a[2] ≥ 0) ∧ (s− a[0] = 0)). The path-based
weakest precondition at different execution points along the trace is:

R3 = R4 = R5 = R6 = R7 = R8 = R9 = Rbottom = R

=((s − a[0] ≥ 0) ∧ (s − a[1] ≥ 0) ∧ (s − a[2] ≥ 0) ∧ (s − a[0] = 0)) (s − a[1] ≥ 0).
R1 = R2 = pwp(s=a[0], R3) = ((0 ≥ 0) ∧ (a[0] − a[1] ≥ 0) ∧ (a[0] − a[2] ≥ 0) ∧ (0 = 0)).

As seen in this example, in order to compute Ri at each point in a trace, we only need
to know the set of the assignment statements that are needed for computation of Ri.
Definition: Given a trace T and the postcondition R of a function F , the pwpSlice
S(T, R, i) is an ordered set of assignment statements from point i to the end of T , upon
which the value of R is directly or indirectly data dependent.
In other words, the pwpSlice S(T, R, i) consists of all the assignment statements that
are needed for computation of Ri. In the above example, S(T, R, 1) is {Stmt2}. At each
execution point i on an error trace, we compare the atomic predicates in the predicate
representing the set of hypothesized program states and the predicate representing the
set of actual program states to look for an evidence for locating the error in the trace.

2.3 Hypothesized Program State

The set of hypothesized program states at an execution point along the trace is represented
by a predicate in disjunctive normal form derived from the postcondition as explained
below.
Definition: Given a trace T and a postcondition R of a function F , the set of hypothesized
program states at an execution point i along the trace is defined as the path-based
weakest precondition Ri = pwp(T<i,n>, R).

The set of hypothesized program states Ri at any execution point i, (i=1, n) along
the trace is computed as Ri = pwp(Stmti, Ri+1) for i=1, n-1 and Rn = pwp(Stmtn, R).

2.4 Actual Program State

The set of actual program states at an execution point along a trace is represented by a
predicate in disjunctive normal form that is actually true for the given input. It consists
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of a set of forward program states, QF
i , and a set of backward program states, QB

i . The
set of forward program states QF

i at an execution point i along a trace T is defined as:
QF

1 = positive conjunctions in precondition.
QF

i = (QF
i−1 - Killi−1) ∪ Geni−1, i=1,n

QF
bottom = (QF

n - Killn) ∪ Genn, i=1,n
where Killi−1 is the set of predicates killed by statement instance Stmti−1 and Geni−1
is the set of predicates derived from Stmti−1. A predicate p is killed by Stmti−1 if there
is a variable in p that is defined at Stmti−1. For example, (i-n<0) is killed by state-
ment i=i+1. Since i is redefined, after i=i+1 is executed, (i-n<0) may not hold.
If Stmti−1 is an assignment statement, then an equivalence is derived from Stmti−1.
If Stmti−1 is a branch predicate, then Geni−1 is the set of predicates in Stmti. The
computation of the set of forward program states QF

4 for the error trace in Figure 1(b)
is shown below.

QF
1 = (n>0)

QF
2 = (n>0)∧(i=1)

QF
3 = (n>0)∧(i=1)∧(s=a[0])

QF
4 = (n>0)∧(i=1)∧(s=a[0])∧(i-n<0)

Given an execution point i, the set of backward program states at i are defined as:
QB

i = pwp(Stmti, Q
B
i+1), if Stmti is an assignment statement

QB
i = Stmti ∧ QB

i+1, if Stmti is a branch predicate
QB

bottom = { }
We illustrate the computation of the set of backward program states for the error trace
in Figure 1(b).

QB
1 = (3-n≥0)∧(a[0]-a[2=2]≤0)∧(2-n<0)∧(a[0]-a[1=1]≤0)∧(1-n<0)

QB
2 = (i+2-n≥0)∧(a[0]-a[i+1=2]≤0)∧(i+1-n<0)∧(a[0]-a[i=1]≤0)∧(i-n<0)

QB
3 = (i+2-n≥0)∧(s-a[i+1=2]≤0)∧(i+1-n<0)∧(s-a[i=1]≤0)∧(i-n<0)

QB
4 = (i+2-n≥0)∧(s-a[i+1=2]≤0)∧(i+1-n<0)∧(s-a[i=1]≤0

QB
5 = (i+2-n≥0)∧(s-a[i+1=2]≤0)∧(i+1-n<0)

QB
6 = (i+1-n≥0)∧(s-a[i=2]≤0)∧(i-n<0)

QB
7 = (i+1-n≥0)∧(s-a[i=2]≤0)

QB
8 = (i+1-n≥0)

QB
9 = (i-n≥0)

QB
bottom = { }

Finally, we define the set of actual program states Qi as Qi = QF
i ∧QB

i .

2.5 Detection of Evidence

A predicate A is less restrictive than predicate B if there is some state in A, which is not
contained in B, or in other words, A(x) ⇒ B(x) is False. An evidence at an execution
point i indicates that the predicate Qi representing the set of actual program states is less
restrictive than the predicate Ri representing the set of hypothesized program states. We
define two types of evidences explicit and implicit.

Explicit Evidence. An explicit evidence shows that the set of actual program states
represented by Qi and the set of hypothesized program states represented by Ri are
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disjoint and thus Qi ⇒ Ri is False; or in other words, Qi is not stronger than Ri at this
program point. Currently, we consider two special cases to detect that the set of states
in Qi and Ri are disjoint. We refer to them as explicit evidence of Type I and explicit
evidence of Type II.

Definition: If at an execution point i along a trace, a negative atomic predicate of the form
r : 0 relop const, i.e., without any variables, appears in the predicate Ri representing
the set of hypothesized states, then r constitutes an explicit evidence Eexplicit(any, r,
i) of Type I.
Let r be a formalized negative predicate in Ri that has the form (0 relop const), i.e.,
there is no variable involved in the predicate r. For example, (0 > 2) is such a False
predicate. Since Qi evaluates to True and False is the strongest predicate, it is obvious
that Qi is less restrictive than r.

Definition: At an execution point i in a trace, let q : exprq relop const1 be an atomic
predicate in Qi and r : exprr relop const2 be a negative atomic predicate in Ri. Then,
q and r form an explicit evidence Eexplicit(q, r, i) of Type II iff exprq=exprr.

Since q evaluates to true and r evaluates to False in the given trace, if exprq = exprr,
then for this trace q exercises a state not contained in the set of states represented by r.
The symbolic difference between q and r provides us a clue to what modification should
be done to the program so as to remove this evidence of q ⇒ r being False. For example,
for the error trace in Figure 1(b), predicate QB

7 representing the set of actual program
states contains a predicate (s-a[i=2]≤ 0) and the predicate R7 representing the
set of hypothesized program states contains another predicate (s-a[2]≥ 0). These
two predicates form an explicit evidence Eexplicit((s-a[i=2]≤ 0), (s-a[2]≥
0), 7). Note that a[i=2] and a[2] refer to the same variable.

Implicit Evidence. An implicit evidence Eimplicit(r) is indicated by a negative pred-
icate r in R1 that is not present in an explicit evidence. For each implicit evidence
Eimplicit(r) in R1, we consider that the trace is lacking a constraint on r. For example,
let consider the R1 for the postcondition conjunction:

R= ((s− a[0] ≥ 0)T ∧ (s− a[1] ≥ 0)F ∧ (s− a[2] ≥ 0)F ∧ (s− a[0] = 0)T ).
The corresponding R1 = ((a[0]− a[1] ≥ 0)F ∧ (a[0]− a[2] ≥ 0)F ). And,

Q1 = (3-n≥0)∧(a[0]-a[2=2]≤0)∧(2-n<0)∧(a[0]-a[1=1]≤0)∧(1-n<0)∧(n>0).
However, in this example both the negative predicates in R1 have corresponding predi-
cates in Q1 that form explicit evidence of Type II. Therefore, there is no implicit evidence
at the top of the trace in this example.

2.6 Location of a Likely Erroneous Statement and Generation of Modification

After an evidence of the predicate Qi being less restrictive than Ri is detected at an
execution point i, the goal is to locate a statement instance at some point j in the trace
such that a modification to Stmtj will remove the evidence at i. From the predicates
involved in an evidence, we determine a problem predicate and a correcting predicate.
These two atomic predicates are treated as character strings and the symbolic differences
between these two strings are computed. We then use these differences to generate a
modification to a statement along the trace so that the detected evidence is removed
from the trace. The modified function is tested with the given test suite to check if the
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Input: An error trace T , postcondition conjunction R and test suite Ts

Output: (succ/fail, mod), where mod is a modified statement in the program.
procedure AutoDebug (T, R, Ts)

for each execution position i ∈ T from i = n to 1 do
step1: Compute set of actual program states Q∗

i and set of hypothesized program states R∗
i .

for each negative predicate r ∈ R∗
i do

step2: if an Eexplicit(any, r, i) detected then Type I Explicit Evidence
Generate and test modifications that change the form of r at i.
if testing successful then return(succ, mod) endif

step3: elseif an Eexplicit(q, r, i) detected then Type II Explicit Evidence
Generate and test modifications that either change the form of q at i

or change the form of r at i to remove the evidence.
if testing successful then return(succ, mod) endif

endif
endfor

endfor
step4: for each negative predicate r ∈ R∗

1 not present in any explicit evidence do
Consider Implicit Evidence Eimplicit(r)
if Eimplicit(r) indicates a missing loop iteration(s) then

Generate modification to add missing loop iteration to actual program state.
Test Modified Program.
if testing successful then return(succ = 1, mod) endif

else
Generate and test modifications that either change form of r at the

top of the trace or change the form of a predicate q in QB∗
1 .

if testing successful then return(succ = 1, mod) endif
endif

endfor
return fail

endprocedure

Fig. 2. The AutoDebug algorithm.

error is removed. Otherwise, if possible another modification to remove the evidence
is generated. If the evidence cannot be removed by all attempted modifications at the
execution point i, the algorithm moves on to process next statement in the trace. Note that
our algorithm will terminate successfully if no error trace is generated when the modified
function is executed with the given test suite. However, that does not necessarily mean
that the modified program is correct. All it means is that the original function was not
able to pass all the test cases in the given test suite whereas the modified function is
able to pass all the test cases in the test suite. The correctness of the solution is clearly
dependent upon how thoroughly the test suite tests the program. It may also be helpful to
take input about whether the modification generated by our algorithm will be acceptable
to the developer.

3 Description of the Algorithm

In this section, we discuss the steps of our algorithm shown in Figure 2 for automatically
locating and correcting an erroneous statement in a function.
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Step 1: Compute the Predicates Representing the Sets of Actual and Hypothesized
Program States. At the entry of each instance of an executed statement Stmti in the
given error trace T , we compute the predicate Qi representing the set of actual program
states and the predicate Ri representing the set of hypothesized program states. We apply
two rules of inference: transitivity and equality to deduce new predicates from other
predicates in each of the program states. Deduced predicates are added to respective
set of program states until no new atomic predicates can be deduced. In the remaining
paper, we use Q∗

i and R∗
i to represent the extended sets of Qi and Ri respectively after

including deduced predicates.
Step 2: Detect and Fix Explicit Evidence of Type I. In this type of evidence, there is
a negative predicate r that does not contain any variables and is present in the predicate
R∗

i representing the set of hypothesized program states. For example, let a predicate is
(10=0) be present in R∗

i at an execution point i on an error trace. Then, it forms an
explicit evidence Eexplicit(any, (10=0), i) of Type I.
Generate Modification. The next step is to generate modifications for the statements
that would remove the above evidence by changing the form of r at execution point i
where evidence is detected. We change the form of r by matching r to a predicate which
is implied by the actual program state so that the atomic predicate in the postcondition
R corresponding to r will be satisfied if the same trace is followed. We consider the
following two approaches to change the form of r at i.

First, if the relational operator in r is =, then we match r to the positive predicate
True. For relational operator =, we define the True predicate to 0=0. Note that the form
of r can be changed only by an assignment statement between execution point i and the
end of trace. It is obvious that modifying an assignment statement in the pwpSlice of
r can change the form of r. However, modifying the LHS of an assignment not in the
pwpSlice of r can also change the form of r at execution point i. Therefore, we consider
each assignment statement between the point i and the bottom of the trace as a possible
candidate for modification. Let Stmtk be the next assignment statement to be considered
and let the predicate in R∗

k corresponding to r be rk. The goal of transforming r to 0=0
can be attained by making rk = (0 = 0), i.e., pwp(Stmtk, rk+1)=(0 = 0). It is obvious
that if expr = lhs−rhs, then pwp(lhs = rhs, (expr = 0)) will be (0 = 0). Therefore,
we consider rk+1 as the correcting predicate c and the equivalence derived from Stmtk
as the problem predicate e.

We consider e and c as a set of strings of characters and compare them to compute the
difference de between e and c and the difference dc between c and e. In our current work,
we assume that the error is either on LHS or on RHS of an assignment statement but
not on both sides of the assignment statement. If de appears on RHS of the assignment
statement Stmtk, the modification is generated to replace de in Stmtk by dc. If de

appears on LHS of Stmtk, the modification is to replace de in Stmtk by dc only if dc

is a single variable.
If the evidence cannot be removed by the above modifications, or if the relational op-

erator in r is not =, we then try our second approach to generate modifications explained
below. We generate additional modifications by matching r to each predicate q in the
predicate Q∗

i with same relational operator as that of r. Note that the predicates in Q∗
i are

all positive predicates in the trace, so they are consistent with each other. By matching
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r to a predicate in Q∗
i other than q, r becomes consistent with q. Thus, in this case r is

the problem predicate e and a predicate q in Q∗
i is used as a correcting predicate c. As

before, we compute de and dc. If modifications generated at execution point i are not
successful in removing the evidence, as before we propagate this matching to execution
points k > i so that the effect of matching at the execution point k is to remove the above
evidence at the execution point i. However, there is a difference. Now a matching at k
can be performed only if the predicate qk corresponding to q is present in Q∗

k i.e., it is
not killed by some assignment between execution points i and k. In addition, in order to
make sure that the modification to an assignment Stmtk at execution point k will change
the form of r at execution point i, we need to check for the following. If the modification
is for RHS of an assignment statement Stmtk, then Stmtk must belong to the pwpSlice
of r. However, if the modification is for the LHS of the assignment statement, we need
to make sure that after modification, the assignment will appear in the pwpSlice of r.
Test Modification. Each of the modification generated above is applied to the original
program. The modified program is then executed for all the test cases in the given test
suite. If the modified program passes all the test cases in the test suite then we consider
that the error has been corrected. Each of the above modification is tested until a version
of the program passes the test suite. If all the above modifications have been tried and
the fault is not fixed, the algorithm moves onto to detect next evidence.
Step 3: Detect and Fix Explicit Evidence of Type II. In this step we detect and fix an
explicit evidence, in which a predicate q in QB∗

i and a negative predicate r in R∗
i have

the same expression on LHS. This evidence also shows that the set of states in Q∗
i are

disjoint from the set of states in R∗
i . To illustrate this, let us assume that QF∗

i , QB∗
i and

R∗
i at an execution point i on an error trace are given as below.
QF∗

i :(n>0)∧(i=0)∧(s=0)∧(i-n<0)
QB∗

i :(i-n+1≥0)∧(s-a[i=0]≤0)
R∗

i :(s-a[0]≥0)F ∧ (s-a[0]=0)F

Two explicit evidences of Type II are detected at execution point i. They are
E1 = Eexplicit((s-a[i=0]≤0), (s-a[0]≥0), i)
E2 = Eexplicit((s-a[i=0]≤0), (s-a[0]=0), i)

For an evidence Eexplicit(q, r, i) of Type II, either q or r could be in error. Therefore,
the modifications for changing the form of q to r at i or changing form of r to q at i
are generated. The modifications for changing the form of r are generated in the same
manner as described for explicit evidence of Type I. To change the form of q to match
to r, we can either change the original branch predicate from which q may be derived,
or we can change an assignment statement on the trace. Note that a modification to
an assignment statement cannot change the relational operator of q. Therefore, if the
relational operators of q and r are different, we directly modify the branch predicate
from which r may be derived.
Step 4: Detect and Fix Implicit Evidence. Implicit evidences are detected at the top
of the error trace. For each negative atomic predicate r in R∗

1 that is not present in
any explicit evidence, we form an implicit evidence as Eimplicit(r). Having an implicit
evidence Eimplicit(r), we check whether the cause for the evidence is because some loop
iterations are missing from the trace. If there is a loop in the trace, which contributes
some constraints on R∗

1, and the missed constraints have similarity with the constraints
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added by the loop, then our algorithm attempts to derive the possible missing iterations
in the loop and generates modification to a statement that would add those iterations into
the trace. This modification is then verified by executing the modified program with the
test suite.

If the implicit evidence is not the case of a missing loop iteration(s), the algorithm
attempts to remove this evidence from R1 fix the fault by generating modifications as in
Steps 2 and 3. Given an implicit evidence of Eimplicit(r), modifications to the statements
along the trace are generated by matching the negative predicate r to atomic predicates q
in Q∗

1 and vice versa. As in steps 2 and 3, modifications to the assignment statements in
the pwp slice of r are also generated by matching them to the component corresponding
to r in the hypothesized state at their exit. As before, each modification is tested by
executing the modified program.

4 Experiments

We have implemented our technique using C and Python languages. The autodebug
algorithm was implemented in C. Postconditions, preconditions and predicate deduction
was implemented using Python. The faulty program is expected to be written in a subset
of C using real, integer and character variables, arrays, conditionals and loop control
constructs. At present, we do not handle faulty programs using pointers. To handle
function calls, we assume that the postconditions and preconditions of the called function
are given. We also assume that either the called function does not have errors, or the trace
of statements through the called function is available. The faulty program is instrumented
to generate execution traces in the format described in the paper. We used the following
five programs in our experiments.
Sum: It computes the sum of all integers in an array a[]. This problem has simple
control structures. The postcondition of this program is a single universal quantifier
which is expanded as conjunctions during the execution.
Max: This program (in section 2) searches the maximum element in an unsorted array
of integers.
Binary Search: It does binary search on a sorted integer array. Its source code, including
the preconditions and postconditions was taken from [7].
Array Copy: This example is a simple program to copy the contents of an array to
another array.
Quicksort: This program, taken from [2], is for Quicksort algorithm on an integer array.
The original code does not have preconditions and postcondition so we derived them
ourselves.

We introduced an error in a statement at a time into these programs. The types of
errors introduced include wrong relational operator used in a branch predicate, wrong
variable used in a branch predicate, wrong variable used in an assignment statement,
incorrect constant used in an assignment statement, etc. We conducted experiments with
our algorithm for locating and correcting the erroneous statements. We also experi-
mented with computing program dices [1] for these faulty programs. We tried to limit
the modification only to the statements in the computed dice. If the algorithm is not
able to correct the program by modification of statements in the dice, then we ran the
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algorithm without using dice. The heuristic used in [1] for picking a dice is to first form
all possible dices and then randomly choose one of them. Since there is no conclusion
about which heuristic is better, we used more conservative method. We chose the dice
with the largest number of statements so that it most likely will not miss an erroneous
statement.

4.1 Results

We show the results of our experiments in Table 1. The column labeled Line No. shows
the line number of the statement in the function in which the error was introduced.
The column labeled Orig. Stmt. shows the original statement in the correct program.
The column labeled Faulty Stmt. shows the statement after error was introduced. The
column labeled Fault Type shows the type of fault introduced such as wrong constant,
wrong operator, missing variable etc. The last column shows the output obtained from
our implementation of AutoDebug algorithm.

It is interesting to note that in rows Sum/1 and Max/3 in Table 1, the correction
generated by our algorithm was in a different statement than the one in which error was
introduced. However, modification in a statement different from the one in which error
was introduced also corrected the problem. Some of the errors resulted in non-terminating
loop and they were not corrected by our algorithm. Also, if an error resulted in a loop
executing more iterations than required, our algorithm was not able to fix it. Other than
these, our algorithm was able to fix most of the errors. Although, we had expected dices
to significantly improve the efficiency of the technique, in our experiments we did not
find dices to be useful in many cases. Only for 3 errors among all the errors in Table 1,
were the erroneous statements included in largest dice for the faulty program. We also
tried to consider the union of statements in all dices. However, we did not find dices to
be very useful in our examples. The reason was that in many cases, such as in branch
predicate fault and variable initialization fault, the faulty statement was executed by all
failed trace as well all correct traces. In some cases, no correct traces were generated
and hence dices were not helpful. The programs used in our experiments were small and
there may be benefits of incorporating dices in our technique for large programs.

5 Related Work

The program slicing based approaches [1,11,15] use static or dynamic dependency anal-
ysis to extract a subset of program statements that can effect the values of variables at
the point where a fault is manifested in the program. A novel approach to automatically
isolate cause-effect chains, based on the difference between the program states of a run
corresponding to a failed and a successful run, has been recently developed [19,9]. The
cause-effect chains isolated by this approach have higher precision than static or dy-
namic slices. Approaches based on dynamic invariant detection that give programmers
warnings that there are anomalies found in the program [8,16] have also been devel-
oped. All these approaches assist the programmers by narrowing down the search for
erroneous statements to a subset of program statements. However, they do not generate
the exact modifications to be made to the program to automatically correct the errors.
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Table 1. Results for Sum, Max, Binary Search(Bin), Array Copy(Arr) and Quicksort(QS) func-
tions.

Program/ Line Orig. Stmt. Faulty Stmt. Fault Type Output
Error No. No. (Line No., Stmt.)

Sum/1 1 i=0 i=1 const:wrong (2, s=a[0])
Sum/2 1 i=0 i=2 const:wrong (1, i=0)
Sum/3 2 s = 0 s = 1 const:wrong (2, s=0)
Sum/4 4 s=s+a[i] s = a[i] var(s):missing (4, s=s+a[i])
Sum/5 4 s=s+a[i] s = i+a[i] var(s):wrong (4, s=s+a[i])
Sum/6 4 s=s+a[i] s=s+a[0] var(a):wrong (4, s=s+a[i])
Sum/7 4 s=s+a[i] s=s-a[i] op:wrong (4, s=s+a[i])
Sum/8 5 i=i+1 i=i+2 const:wrong (5, i=i+1)
Sum/9 5 i=i+1 i=i const:wrong No (infinite loop)
Sum/10 3 while(i<n) while(i<n-1) const:wrong (3, while(i<n))
Sum/11 3 while(i<n) while(i<n+1) const:wrong No (extra loop)
Sum/12 3 while(i<n) while(i+n) relop:wrong No (infinite loop)
Sum/13 3 while(i<n) while(i>n) relop:wrong No (loop not enter)
Max/1 2 s=0 s=10 const:wrong (2, s=a[0])
Max/2 5 s=a[i] s=i var(a):wrong (5, s=a[i])
Max/3 1 i=0 i=1 const:wrong (2, s=a[0])
Max/4 6 i=i+1 i=i-1 op:wrong No (system error)
Max/5 4 if(s<a[i]) if(s>a[i]) relop:wrong (4, if(s<a[i])
Max/6 4 if(s<a[i]) if(s<a[0]) var(a):wrong (4, if(s<a[i]))
Max/7 4 if(s<a[i]) if(s>=a[i]) relop:wrong (4, if(s<a[i]))
Max/8 3 while(i<n) while(i<n-1) branch:const (3, while(i<n))
Bin/1 1 i=0 i=1 const:wrong (2, i=0)
Bin/2 2 j=n+1 j=n const:wrong (2, j=n+1)
Bin/3 4 e=(i+j)/2 e=i+j op:wrong No (infinite loop)
Bin/4 6 i = e i = j var(s):wrong No (infinite loop)
Bin/5 6 i = e j = e def(s):wrong (6, i = e)
Bin/6 4 e=(i+j)/2 e=(i*j)/2 op:wrong No (infinite loop)
Bin/7 3 while(i+1!=j) while(i+2<j) const:wrong (3, while(i+2<j+1))
Bin/8 3 while(i+1!=j) while(i!=j) relop:wrong No (infinite loop)
Bin/9 5 if(a[e]<=x) if(a[e]<x) relop:wrong (5, if(a[e]<=x))

Bin/10 5 if(a[e]<=x) if(a[e]>x) relop:wrong (5, if(a[e]<=x))
Bin/11 5 if(a[e]<=x) if(a[0]<=x) var(a):wrong (5, if(a[e]<=x))
Bin/12 5 if(a[e]<=x) if(a[i]<=x) var(a):wrong (5, if(a[e]<=x))
Bin/13 5 if(a[e]<=x) if(i<x) var(a):wrong (5, if(a[e]<=x))
Arr/1 3 s1[i]=s2[i] s1[i]=s2[i+1] var(a):wrong (3, s1[1]=s2[i])
Arr/2 3 s1[i]=s2[i] s1[0]=s2[i] var(a):wrong (3, s1[i]=s2[i])
Arr/3 3 s1[i]=s2[i] s1[i]=i var(a):wrong (3, s1[i]=s2[i])
Arr/4 1 i=0 i=1 assign:const (1, i=0)
Arr/5 4 i=i+1 i=i-1 assign:arithm No (system error)
Arr/6 2 while(i<=n) while(i<n) branch:relop (2, while(i<n+1))
Arr/7 2 while(i<n) while(i>n) branch:relop No (loop not entered)
QS/1 3 last=(left+right)/2 last=(left+right)*2 assign:arithm No (out of array boundary)
QS/2 4 temp=a[left] temp=a[0] var(a):wrong (4, temp=a[left])
QS/3 5 a[left]=a[last] a[left]=temp var(a):wrong (5, a[left]=a[last])
QS/4 5 a[left]=a[last] a[last]=a[last] var(a):wrong (5, a[left]=a[last])
QS/5 8 if(a[i]<a[left]) if(a[i]>=a[left]) relop:wrong (8, if(a[i]<a[left]))
QS/6 10 if(a[i]<a[left]) if(a[i]<a[last]) var(a):wrong (10, if(a[i]<a[left]))
QS/7 11 a[last]=a[i] a[left]=a[i] var(a):wrong (11, a[last]=a[i])
QS/8 13 a[last]=a[i] a[left]=a[i] var(a):wrong (13, a[last]=a[i])
QS/9 16 i=i+1 i=i assign:arithm No (infinite loop)
QS/10 18 temp=a[left] temp=a[last] var(a):wrong (18, temp=a[left])

To determine the exact nature of the error and check whether it lies in the localized
program statements, the programmers have to modify the program and re-execute the
program until they obtain correct output. In contrast, our approach attempts to automati-
cally locate the error statement and generate the correction to be applied to the erroneous
statement. In our future work, we would further analyze the type of errors that can be
detected by our approach and the types of errors in which other approaches can be more
helpful.
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6 Conclusions

In this paper, we have presented a new technique that combines ideas from formal
analysis of programs and software testing to automatically locate and correct erroneous
statements. Our technique is based on matching of character strings which is guided
by removal of some symbolic evidences that make actual program state less restrictive
than hypothesized program state at some execution point. Our preliminary experiments
show that our approach is promising. In the current work, we have assumed that only
one program statement is in error. In our future work, we plan to relax this restriction
and evaluate our technique for large programs.
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Abstract. TOBIAS is a combinatorial testing tool, aimed at the pro-
duction of large test suites. In this paper, TOBIAS is applied to con-
formance tests for model-based specifications (expressed with assertions,
pre and post-conditions) and associated implementations. The tool takes
advantage of the executable character of VDM or JML assertions which
provide an oracle for the testing process. Executing large test suites may
require a lot of time. This paper shows how assertions can be exploited
at generation time to filter the set of test cases, and at execution time
to detect inconclusive test cases.
Keywords: combinatorial testing, model-based specifications, VDM,
JML

1 Introduction

Software testing appears nowadays as one of the major techniques to evaluate the
conformance between a specification and some implementation. Some may argue
that testing only reveals the presence of errors and that conformance may only
be totally guaranteed by formal proof, exhaustive testing or a combination of
both techniques. Unfortunately, such techniques are often very difficult to apply.
In such cases, testing may contribute to increase the confidence that the im-
plementation conforms to its specification. Confidence may result from coverage
measurements, from the principles of the test synthesis or selection technique,
from the size of the test suite, or from the expertise of the test engineers.

Industrial experiments [5] have shown that test cases within a large test suite
often feature a high level of similarity. Many test cases correspond to the same
sequence of method calls, with different parameters. Producing these test cases
is a repetitive task that reveals the need for appropriate tool support.

From these observations, we have developed the TOBIAS test generator1

which is aimed at the production of a large set of similar test cases. TOBIAS
starts from a test pattern and a description of its instantiations. The tool then
unfolds the pattern into a large set of test cases which can be output according
to the format of several test tools: calls to VDM operations [12] for VDMTools,
Java test cases for JUnit[9] and JML specifications [8,10,11], and test purposes
for TGV [7].
1 TOBIAS was developed within the COTE project, with the support of the French

RNTL program. The COTE project gathered Softeam, France Telecom R&D, Gem-
plus, IRISA and LSR/IMAG.

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 281–294, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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TOBIAS is a typical example of combinatorial testing tool. Its originality is
to deal with sequences of method calls, instead of only combination of parameter
values. This allows to use the tool with systems that require several interactions
before reaching some “interesting” states. It also allows to design test cases in
terms of the behavior that has to be exercised.

This paper gives an introduction to TOBIAS. Sect. 2 recalls the principles of
conformance testing using executable model-based specifications. Then Sect. 3
gives a quick presentation of the tool and reports on its capability to find errors,
on the basis of a simple example, and from the results of industrial experiments.
The intrinsic limitation of the tool is that it is subject to combinatorial explosion.
Sect. 4 presents two kinds of filters that can be used with TOBIAS to help master
the size of test suites. Finally, Sect. 5 draws the conclusions and perspectives of
this work.

2 Conformance Testing with Model-Based Specifications

2.1 Checking Conformance with Model-Based Specifications

Model-based specifications describe a system in terms of invariant properties,
pre- and postconditions. Some model-based languages, e.g. VDM and JML, have
an executable character. It is thus possible to use invariant assertions, as well
as pre- and postconditions as oracle for a conformance testing process. VDM
assertions can be evaluated in the VDMTools environment against the VDM
version of the specified code [6], or compiled into C++ [1]. JML specifications
are translated into Java, added to the code of the specified program, and checked
against it. The executable assertions are thus executed before, during and after
the execution of a given operation (Fig. 1).

One should note that the specification invariants are not exactly checked at
the same instants in JML and VDM. In VDM, invariants are evaluated after
each statement. In JML, invariants are properties that have to hold in all visible
states. A visible state roughly corresponds to the initial and final states of any
method invocation [8].

State Variables

State invariant
Nested checks

Operation

Typing invariants
State invariant

Internal checksInitial check
Precondition Typing invariants

Output ParametersInput parameters

Typing invariants
Postcondition

State invariant

Final check

Fig. 1. Dynamic checks associated to operation execution
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When an operation is executed in one of those environments, three cases may
happen (Fig. 1):

– All checks succeed: the behavior of the operation conforms with the spec-
ification for these input values and initial state. The test delivers a PASS
verdict.

– An intermediate or final check fails: this reveals an inconsistency between
the behavior of the operation and its specification. The implementation does
not conform to the specification and the test delivers a FAIL verdict.

– An initial check fails: in this case, performing the whole test will not bring
useful information because it is performed outside the specified behavior.
This test delivers an INCONCLUSIVE verdict.
For example,

√
x has a precondition that x has to be positive. Therefore, a

test of a square root method with −1 leads to an INCONCLUSIVE verdict.

2.2 A Small Example in VDM and JML

Let us study a simple example of buffer system (Fig. 2). This system is composed
of three buffers. The specification models only the number of elements present
in the buffers. A buffer is then modeled with an integer value, which indicates
the number of elements in it. The system state is given by the three variables
b1, b2 and b3.

The maximum size of the system is 40 elements. The system has to distribute
the elements amongst the buffers so that: buffer b1 is smaller than b2, which is
smaller than b3. The difference between b1 and b3 should not exceed 15 elements.
These constraints leave some freedom on the way to share the elements between
buffers. For example, 30 elements can be stored as b1=5 b2=10 b3=15 or as b1=8
b2=10 b3=12.

Three methods are set to modify the systems:

– Init resets all buffers to zero.
– Add(x) increases the total number of elements of the system of a strictly

positive number (x) (i.e. it adds x elements to the buffers; these elements
are distributed in b1, b2, and b3).

– Remove(x) decreases the total number of elements in the system of a strictly
positive number (x) (i.e. it removes x elements from the buffers).

The specifications of Add and Remove keep some implementation freedom: the
buffer in which the elements have to be added/removed is not set. For example,
if the current state is 8 10 12, and if 2 elements have to be added, the final
state could be 8 10 14, 8 12 12 , but also 6 12 14.

2.3 Test Cases

We define a test case as a sequence of operation calls. For example, the following
test case initializes the buffer system, adds two elements and removes one of
them.

TC1 : Init() ; Add(2) ; Remove(1)
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------------------ VDM ------------------
state buffers of

b1 : nat
b2 : nat
b3 : nat

inv mk_buffers(b1,b2,b3) ==
b1+b2+b3<=40 and 0<=b1 and b1<=b2 and b2<=b3 and b3-b1<=15

init B == B = mk_buffers(0,0,0)
end

operations
Init:() ==> ()
Init() == ...
post b1+b2+b3=0
;
Add: nat ==> ()
Add(x) == ...
pre x<=5 and b1+b2+b3+x<=40
post b1+b2+b3 = b1˜+b2˜+b3˜+x
;
Remove: nat ==> ()
Remove(x) == ...
pre x<=5 and x<=b1+b2+b3
post b1+b2+b3 = b1˜+b2˜+b3˜-x
;
------------------ JML ------------------
public class Buffer{

public int b1;
public int b2;
public int b3;

/*@ public invariant
@ b1+b2+b3<=40 && 0<=b1 && b1<=b2 && b2<=b3 && b3-b1<=15; */

/*@ requires true;
@ modifies b1, b2, b3;
@ ensures b1==0 && b2==0 && b3==0; */

public Buffer(){}

/*@ requires true;
@ modifies b1, b2, b3;
@ ensures b1==0 && b2==0 && b3==0; */

public void Init(){...}

/*@ requires x<=5 && b1+b2+b3+x<=40 && x>=0;
@ modifies b1, b2, b3;
@ ensures b1+b2+b3==\old(b1+b2+b3)+x;

*/
public void Add(int x){...}

/*@ requires x<=5 && x<=b1+b2+b3 && x>=0;
@ modifies b1, b2, b3;
@ ensures b1+b2+b3==\old(b1+b2+b3)-x; */

public void Remove(int x){...}
}

Fig. 2. Buffer example specification in VDM and JML
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Each operation call may lead to a PASS, FAIL or INCONCLUSIVE verdict.
As soon as a FAIL or INCONCLUSIVE verdict happens, we choose to stop the
test case execution and mark it with this verdict. A test case that is carried out
completely receives a PASS verdict.

For example, in the context of the above specification, the test cases TC2
and TC3 should produce an INCONCLUSIVE verdict. If test TC4 is executed
against a “correct” implementation, it should produce a PASS.
TC2 : Init() ; Add(-1)
TC3 : Init() ; Add(2) ; Remove(3)
TC4 : Init() ; Add(3) ; Remove(2) ; Remove(1)

3 TOBIAS

TOBIAS is a test generator based on combinatorial testing [4]. Combinatorial
testing performs combinations of selected input parameters values for given op-
erations and given states. For example, a tool like JML-JUnit [3] generates test
cases which consist of a single call to a class constructor, followed by a sin-
gle call to one of the methods. Each test case corresponds to a combination of
the parameters of the constructor and a combination of the parameters of the
method.

3.1 Principles of TOBIAS

TOBIAS adapts combinatorial testing to the generation of sequences of operation
calls. This allows to reach states that do not correspond to a single call to a
constructor. It also allows to design tests in terms of behaviors rather than
states. For example, in the specification of the buffers, the initial state is fixed
(0 0 0), and it is not possible to add more than 5 elements at a time. Therefore
a rather long sequence is needed (at least 8 operations) to test the behavior of
the system at its limits (40 elements).

The input of TOBIAS is composed of a test pattern (also called test schema)
which defines a set of test cases. A pattern is a bounded regular expression
involving the operations of the VDM or JML specification. TOBIAS unfolds the
pattern into a set of sequences, and then computes all combinations of the input
parameters for all operations of the pattern.

The patterns may be expressed in terms of groups, which are structuring
facilities that associate a method, or a set of methods to typical values. For
example, let us consider schema S1:{

Init() ; Add_Gr
with Add_Gr = {Add(x)|x ∈ {1, 2, 3, 4, 5}}

Add_Gr is a set of 5 instantiations of calls to the method Add. The pattern S1 is
unfolded into 5 test sequences:
S1-TC1 : Init() ; Add(1)
S1-TC2 : Init() ; Add(2)
...
S1-TC5 : Init() ; Add(5)
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Groups may also involve several operations. Let S2 and S2’ be two other
examples of schemas:⎧⎨⎩S2 = Init() ; Modify_Grˆ{1..2}

S2’ = Init() ; Add(2) ; Modify_Grˆ{1..2}
with Modify_Gr = {Add(x)|x ∈ {1, 2, 3, 4, 5}} ∪ {Remove(y)|y ∈ {1, 3, 5}}

Modify_Gr is a set of (5+3)=8 instantiations. The expression ˆ{1..2} means
that the group is repeated 1 to 2 times. The patterns S2 and S2’ are unfolded
into 8+(8*8)=72 test sequences:

S2-TC1 : Init() ; Add(1)
...

S2-TC8 : Init() ; Remove(5)
S2-TC9 : Init() ; Add(1) ; Add(1)
...

S2-TC72 : Init() ; Remove(5) ; Remove(5)
----------------------

S2’-TC1 : Init() ; Add(2); Add(1)
...

S2’-TC72 : Init() ; Add(2); Remove(5) ; Remove(5)

Group definitions may be reused in several schemas, leading to some level of
modular construction.

3.2 Finding Errors with Tobias

Let us consider the buffer problem specification. We have proposed an imple-
mentation, containing one error: the Remove operation can set one of the three
buffers to a negative value while keeping the total number of elements positive,
which is forbidden by the specification invariant. This solution was implemented
in VDM and Java. We executed the tests corresponding to the schemas S2, S2’,
S3, and S4.⎧⎪⎪⎨⎪⎪⎩

S3 = Init() ; Add(5)ˆ7 ; Modify_Grˆ{1..2}
S4 = Init() ; Add_Gr ; Modify_Grˆ{1..3}
with Modify_Gr = {Add(x)|x ∈ {1, 2, 3, 4, 5}} ∪ {Remove(y)|y ∈ {1, 3, 5}}
and Add_Gr = {Add(x)|x ∈ {1, 2, 3, 4, 5}}

The schema S2’ was introduced in order to decrease the number of incon-
clusive verdicts of schema S2. The schema S3 aims at testing the behavior of
the application at the “limits”, i.e. when the buffer system is quite full. The
schema S4 was built to produce lots of test sequences (some kind of “brute force
approach”). The following table gives the verdicts of the various test cases.

Schema Test cases Pass Inconclusive Fail

S2 72 39 33 0
S2’ 72 48 22 2
S3 72 57 15 0
S4 2920 1887 773 260
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As expected, the error is detected (by schemas S2’ and S4). S3 is aimed at
testing full buffers and can not reveal the error; S2 is a small test suite with a
lot of inconclusive test cases, which does not achieve enough exhaustiveness to
find the error.

This example shows that TOBIAS test suites are able to find errors. Here the
error was not straightforward, and small test suites such as S2 are not sufficient
to detect it (actually, the error may only happen if two Add operations have been
performed). Longer test sequences are needed, such as the ones generated by S4.

We have carried out several experiments with TOBIAS. In [12], we report on
a VDM case study. This case study showed that the development of a TOBIAS
test suite requires the same amount of effort as a simple manual test suite. It also
shows that since TOBIAS test suites achieve more exhaustiveness (by exercising
all combinations in the schema), they reveal some errors that are often overlooked
by manual test suites.

3.3 Industrial Case Study

Two experiments were also carried out on an industrial case study provided by
Gemplus (a smart card manufacturer). The case study is a banking application
which deals with money transfers. It has been produced by Gemplus Research
Labs and is somehow representative of java applications connected to smart
cards. The application user (i.e. the customer) can consult his accounts and make
some money transfers from one account to another. The user can also record some
“transfer rules”, in order to schedule regular transfers. These transfer rules can
be either saving or spending rules.

The case study is actually a simplified version of an application already used
in the real world. The code length is 500 lines. The specification was given in
JML. Most preconditions are set to true. Since the application deals with money,
and since some users may have malicious behaviors, the application is expected
to have defensive mechanisms. Thus, it is supposed to accept any entry, but
it should return error messages or raise exceptions if the inputs are not those
expected for a nominal behavior. It is a typical example of defensive programming
style. This means that test cases do not produce INCONCLUSIVE verdicts.

Two testing experiments with TOBIAS were carried out from this case study.
The first one was carried out by a Gemplus team. They have first used their
internal testing methodology to elaborate an informal test plan. It includes 40
nominal “scenarios” (a scenario is an informal description of a test case). It
was possible to abstract those scenarios and express them with only 5 TOBIAS
schemas, which were unfolded into 1900 executable test cases. This experiment
shows that TOBIAS schemas are more compact than test cases. Moreover, by
abstracting test cases into schemas, we ended up with more general schemas
than the original scenarios, resulting into 50 times more test cases.

This experiment was considered as a success by our industrial partner. On
the one hand, TOBIAS schemas were perceived as an interesting structuring
mechanism for the design of tests. On the other hand, the tool allows to complete
the original test suites by achieving some kind of exhaustiveness.
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The second experiment was carried out by our research team. From the in-
formal requirements, we deduced 17 TOBIAS schemas, mainly to simulate ma-
licious behaviors. They were unfolded into 1100 test sequences, representing 40
000 Java code lines (for JUnit). It took 6 person-day to analyze the specification,
produce the abstract scenarios, execute the tests and analyze the traces. (The
test suite execution time by itself takes only 1 hour.) The execution of the test
cases revealed 16 errors, in either the Java code or in the corresponding JML
specification. A discussion with the Gemplus team after the experiment showed
that we discovered most of the errors in the code. The only remaining error was
impossible to detect because the JML specification did not address this feature
of the system.

3.4 Conclusion

TOBIAS is a combinatorial tool that instantiates a large set of test sequences
from an abstract description. It aims to be a simple and easy to use tool for
combinatorial testing which supports and amplifies the creative work of a test
engineer. The tool can also be used in order to express existing test sequences
in a more abstract way, which helps the test engineer to structure his test suite.

Several experiments have shown that it is well-suited for a conformance test-
ing activity, in conjunction with executable model-based specification. These
experiments include both research and industrial case studies. In all these case
studies, the tool allowed to detect errors in the implementation under test.

4 Handling Large Test Suites

The major strength of TOBIAS is also its main weakness. The combinatorial
approach allows to produce large test suites, whose systematic character helps
to detect errors. But the size of the test suite may also become a problem when
too many resources are needed to run the tests and analyze their results. The
first way to avoid combinatorial explosion is to design test schemas with great
care. By avoiding useless calls in the schema and by keeping the possible values of
a parameter to a minimum, we were able to control the number of generated test
cases in the experiments we led so far. Nevertheless, two additional mechanisms
have proved to be useful to reduce the amount of tests. They filter the set of
test cases either at execution or at generation time.

The typical size of a TOBIAS test suite ranges from hundreds to thousands
of tests. Today, the largest test suite generated by the tool counts about 40
000 test cases. Several experiments have shown that such test suites include a
large number of inconclusive test cases. For instance, schema S4 leads to 773
INCONCLUSIVE test cases. Although these are useful to test preconditions,
their execution may require a significant amount of time, and it makes sense to
try to eliminate some of them.

This section will discuss two techniques, based on predicates, that are used
to control or cope with the size of TOBIAS test suites.
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Fig. 3. Exploitation of TOBIAS generated tests in the VDM environment

– Filtering at the execution time: a test driver takes into account the results
of the oracle and filters out test cases with a prefix that has already failed
one of the checks.

– Filtering at the generation time: the test case generator can take into account
a predicate which filters out test cases whose input parameters do not fulfill
the predicate.

4.1 Filtering at Execution Time

By construction, TOBIAS test suites are made up of similar test cases. One of
the possible similarities is that several test cases may share a common prefix.
For example, schema S2’ includes 9 test cases which start with prefix init() ;
Add(2) ; Remove(5). If the execution of the prefix is erroneous (or INCON-
CLUSIVE) for any of the 9 test cases, and if the implementation is deterministic,
the 8 remaining test cases will also exhibit an erroneous (or INCONCLUSIVE)
prefix. It is useless to execute the test cases with this prefix.

Therefore, we have developped test drivers that take this property into ac-
count. Every erroneous prefix is stored during the execution of the test suite.
Before playing a new test case, it is compared to the stored erroneous prefixes
and discarded if it matches any of them.

The nice property of this filtering scheme is that it takes advantage of the
executable VDM/JML assertions (mainly preconditions) to help filter the test
suite. It does not require additional input from the user. Of course, this filtering
scheme is better suited to specifications that include strong preconditions. It will
not provide any benefit for specifications which adopt a defensive programming
style, with all preconditions set to true.

Buffer Case Study
The following table shows the execution time for the 4 test suites of the buffer
problem. The tests were executed on a Pentium III/500MHz/128Mb linux ma-
chine.

VDM JML

Schema
Test
cases Pass

Incon-
clusive

Fail
Exec.
Time

Exec. Time
with filtering

Exec.
Time2

Exec. Time
with filtering

S2 72 39 33 0 2 s. 1.205 s. 0.709 s. 0.134 s.
S2’ 72 48 22 2 2 s. 1.674 s. 0.524 s. 0.157 s.
S3 72 57 15 0 6 s. 4.596 s. 0.400 s. 0.269 s.
S4 2920 1887 773 260 2min 05 s. 9.930 s. 14.307 s. 1.352 s.

2 With JML-Junit environment.
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The tests were executed with filtering and non-filtering test drivers. As ex-
pected, the optimized drivers execute the test suites quicker than the original
test drivers. The speed up is more important when there are many INCON-
CLUSIVE (or FAIL) verdicts. Both kinds of drivers reveal the implementation
error.

Banking Application
The banking application is a typical example of defensive programming. The
preconditions of operations are usually set to true, in order to face all kinds
of unexpected inputs. With such applications, the test cases never end up with
an INCONCLUSIVE verdict. Therefore, filtering at execution time can only
take into account the prefixes which lead to a FAIL verdict. In the banking
application, this corresponds to a small number of tests (at most 1%). Hence,
filtering at execution time does not lead to a significant speed-up.

The following experiment was led to make sure that the filtering mechanism
did not slow down execution significantly when there are no INCONCLUSIVE
test cases. We have executed the tests with both JUnit and our driver for Java,
on a Pentium III/500MHz/128Mb Windows machine. This one has some limita-
tions. For instance, it is not possible to set several instantiations for a constructor
method in the same test suite (a test suite here is the set of test cases derived
from one schema). As a result, some the test suites were not executable with our
driver. The following table shows the execution time for the tests. As it can be
noticed, the execution time with our driver is shorter than with JUnit.

Schema nb of tests with Junit
with our
driver Speedup

One account creation 162 0.671 s. 0.410 s. 0.39
Several account creations 96 0.401 s. 0.030 s. 0.93
One account deletion 30 0.160 s. 0.060 s. 0.63
Several account deletions 512 2.553 s. 0.641 s. 0.75
Several transfers 1 0.050 s. 0.060 s. -0.20
Incorrect transfer (1) 16 0.251 s. 0.240 s. 0.04
Incorrect transfers (2) 60 0.520 s. 0.601 s. -0.16
Incorrect transfers (3) 2 0.040 s. 0.030 s. 0.25
Use of infinity values 12 0.141 s. 0.110 s. 0.22
12 digit numbers 4 0.070 s. 0.060 s. 0.14
Transfers and account deletion 12 0.140 s. 0.080 s. 0.43
Transfer rules (1) 120 2.163 s. 2.204 s. -0.02
Transfer rules (2) 96 1.733 s. 1.592 s. 0.08
Transfer rules (3) 12 0.341 s. 0.180 s. 0.47
Transfer rules (4) 8 0.301 s. 0.110 s. 0.63
Saving rule and account deletion 3 0.591 s. 0.050 s. 0.91
Spending rule and account deletion 3 0.711 s. 0.080 s. 0.87

Our experiments (the banking application and the buffers) show that our
test driver is faster than JUnit. There are several reasons:
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– algorithmic reasons: when a large number of tests have the same prefix,
and when this prefix leads to a FAIL or an INCONCLUSIVE verdict, these
tests (which are amongs the longest of the test suite) are not executed with
our driver. For example, in the S4 schema, 760 tests are discarded, which
corresponds to a quater of the tests.

– technical reasons: JUnit has a generic character and uses introspection/re-
flection facilities to discover th tests stored in a class. Our test driver is
directly compiled from the test suite and does not have to find this infor-
mation. Moreover, we suspect that the graphical interface of JUnit (which
were used during our tests) also slows down the execution. The banking ex-
periment, which never leads to INCONCLUSIVE verdicts, shows that these
technical reasons alone result in significant speedups.

4.2 Filtering Test Cases at Generation Time

The previous section has shown that preconditions and other assertions could
filter a lot of INCONCLUSIVE test cases at execution time. TOBIAS provides
an other mechanism which allows to eliminate some test cases at generation
time, using a VDM predicate as a filter.

Let us consider again the schemas S2 to S4. A lot of the inconclusive verdicts
are due to the fact that the total number of removed elements is greater than the
total number of added elements. One idea is to complete the schema definitions
with a constraint on the combination of parameters. Schema S2 was defined as:{

S2 = Init() ; Modify_Grˆ{1..2}
with Modify_Gr = {Add(x)|x ∈ {1, 2, 3, 4, 5}} ∪ {Remove(y)|y ∈ {1, 3, 5}}

and unfolds into 72 test cases:

S2-TC1 : Init() ; Add(1)
...
S2-TC72 : Init() ; Remove(5) ; Remove(5)

Let add1 be the sequence of x parameters associated to each call to Add in
a given test case, and del1 be the sequence of y parameters associated to each
call to Remove. For example, test case S2-TC1 corresponds to add1 = [1] and
del1 = [], and test case S2-TC72 corresponds to add1 = [] and del1 = [5,5].
The following VDM constraint expresses that the sum of the elements of add1
is greater than or equal to the sum of elements of del1.

S2_constraint : () ==> bool
S2_constraint() == (
dcl sommeAdd : nat:=0;
dcl sommeDel : nat:=0;
for a in add1 do (sommeAdd:= sommeAdd+a;);
for d in del1 do (sommeDel:= sommeDel+d;);

return(sommeAdd>=sommeDel) )
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TOBIAS has been extended to generate sequences add1 and del1 for each
unfolded test case, and then pass them to a VDM interpreter which evaluates
the constraint. Test cases which fail to verify the constraint are discarded from
the generated test suite.

With schema S2 and S2_constraint, the resulting test suite only features 48
test cases, among wich only 9 lead to INCONCLUSIVE verdict (instead of 33).

This first example has shown that constraints can get rid of INCONCLUSIVE
tests at generation time. But this technique requires the test engineer to write
the constraint, while filtering at execution time took advantage of the existing
preconditions. Still, filtering at generation time is an interesting mechanism,
because constraints can be motivated by other concerns than simply ruling out
INCONCLUSIVE tests, as will be shown in the following example.

Application to the Banking Problem
It was already mentioned that the banking problem does not lead to INCON-
CLUSIVE verdicts. Still, constraints can be used in this case study to master
combinatorial explosion by adding further test hypotheses.

One of the 17 schemas is named “Several account deletions”. It is unfolded
into 512 test cases, which is actually the highest number of test cases in this
experiment. This schema is defined as follows:

Createˆ{2..2}; Deleteˆ{3..3}; CreateErr; Delete

where Create has only one instance, CreateErr has two instances and Delete
has four instances corresponding to four possible values of its only integer pa-
rameter. This schema is unfolded thus into 1*1*4*4*4*2*4= 512 test cases.

In order to reduce this size, one may wish to express additional test hypothe-
ses. For example, Delete can be instantiated as Del(10), Del(11), Del(12), or
Del(13). A first test hypothesis may be that the order of the first three instances
of Delete is not significant. Therefore the following test sequences are equivalent
for the tester:

Create; Create; Del(10); Del(11); Del(12); CreateErr; Del(10)
Create; Create; Del(12); Del(11); Del(10); CreateErr; Del(10)

Let del1 be the sequence of parameters associated to the first three calls
to Delete, the following constraint expresses that only the sequence where the
parameters appear in ascending order will be kept:

forall val1, val2 in set inds del1 &
val1<val2 => del1(val1)<=del1(val2)

Another test hypothesis (here a regularity hypothesis) is that it does not
make sense to try to delete the same account more than twice. This hypothesis
can be enforced if the four Delete calls refer to at least three different accounts.
Let del2 be the single element sequence corresponding to the fourth call to
Delete, this constraint can be expressed as:

card(elems(del1) union elems(del2))>=3
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These hypotheses are then grouped into the following constraint.

Delete_C : () ==> bool
Delete_C () == (
return(

(forall val1, val2 in set inds del1 &
val1<val2 => del1(val1)<=del1(val2))

and
card(elems(del1) union elems(del2))>=3
)

)

When TOBIAS takes this constraint into account, the number of unfolded
test cases is reduced from 512 to 80. From a test engineer point of view, this
reduction may be interesting since it results in a better balance of the whole test
suite. Thus this test schema no longer appears as the most significant one.

5 Conclusion

This paper has presented TOBIAS, a test case generator based on the combina-
torial unfolding of test schemas. It has shown how the tool can be combined with
executable model-based specifications in a conformance testing process. TOBIAS
aims to be a simple and easy to use tool for combinatorial testing which supports
and amplifies the creative work of a test engineer. The tool has proved to be use-
ful to detect errors in several case studies, including an industrial experiment
where Java code was tested against a JML specification.

Other tools adopt a combinatorial testing approach in combination with
model-based specifications. Korat [2] and JML-JUnit [3] generate combinations
of a call to a constructor followed by a single call to one of the methods of the
class. Korat uses an elaborate generator to cover a wide range of calls to the
constructor. TOBIAS adds the possibility to express a sequence of method calls
in the test schema, allowing to reach states that cannot be created with the
constructor and to express tests on the basis of a behavior.

This paper has also presented filters that help master the size of the generated
test suites. Filtering at execution time is an interesting feature because it does
not require additional inputs from the test engineer. It allows to filter a significant
percentage of the tests for specifications with strong preconditions.

Filtering at generation time requires that the test engineers express some con-
straints on the schema parameters. But it is a more flexible filtering mechanism
and allows to translate test hypotheses into filtering constraints.

Perspectives. Several improvements may be considered when filtering at genera-
tion time. On the one hand, several typical constraints could be added as prim-
itives of the schema language. For example, a variant of iteration of a method
could mandate parameter values to be all different, or to appear in ascending
order. On the other hand, a library of constraints could be developed to ex-
press frequently used testing constraints. Moreover, since constraints translate
test hypotheses, the library could be structured in terms of these higher level
concerns.
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Still, improvements in filtering capabilities should not prevent the test en-
gineers from handling combinatorial explosion by a careful design of their test
schemas. Further methodological advances are needed to guide the elaboration
of test schemas. We expect that further experiments with TOBIAS with help us
to progress in that direction.

References

1. B.K. Aichernig. Automated black-box testing with abstract VDM oracles. In
M. Felici, K. Kanoun, and A. Pasquini, editors, SAFECOMP’99, LNCS 1698, pages
250–259. Springer, 1999.

2. C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on
java predicates. In Proceedings of the International Symposium on Software Testing
and Analysis, Rome, 22–24 July 2002. IEEE.

3. Y. Cheon and G.T. Leavens. A simple and practical approach to unit testing: The
JML and JUnit way. In B. Magnusson, editor, ECOOP 2002 — Object-Oriented
Programming, 16th European Conference, Malaga, Spain, Proceedings, LNCS 2474,
pages 231–255. Springer, 2002.

4. D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton. The combinatorial design
approach to automatic test generation. IEEE Software, 13(5):83–88, 1996.

5. L. du Bousquet, H. Martin, and J.-M. Jézéquel. Conformance Testing from UML
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Abstract. The topic of software architecture (SA) based testing has recently 
raised some interest. Recent work on the topic has used the SA as a reference 
model for code conformance testing, to check if an implementation fulfills 
(conforms to) its specification at the SA level. In this context, on previous pa-
pers, we have analyzed: i) how suitable test cases can be “selected” from the 
SA specification and ii) how they may be “refined” into concrete tests executa-
ble at the code level. While the selection stage has been done systematically, 
the refinement step has been left to be done manually, based on the software 
engineer knowledge on how to map “abstract values of the specification to the 
concrete values of the implementation”. In this paper, we extend previous ap-
proaches, by providing a systematic way to perform the refinement step. We 
show how choosing a specific architectural style, which supports implementa-
tion and facilitates the mapping among SA-based and code-based test cases, a 
completely systematic SA-based testing approach can be delivered. 

1   Introduction 

Software testing consists of the “dynamic verification of the behavior of a program on 
a finite set of test cases, suitably selected from the usually infinite executions domain, 
against the specified behavior” [5]. Traditional approaches to software testing select 
test cases based on the source code of the program to be tested [16].  

With the advent and use of software specifications, source code no longer has to be 
the single source for selecting test cases: formal, informal and model-based specifica-
tions can be used for this purpose [5, 16]. The importance of the use of formal meth-
ods in software specification and design does not need to be stressed here. Several 
authors have highlighted the advantages of formal methods in testing, and different 
techniques have been proposed to select tests from semi-formal specifications [24], 
algebraic specifications [3], model-based specifications [12] and Software Architec-
ture-based specifications [4, 25].  
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Particular interest has been devoted to specification-based conformance testing [8, 
14, 30]. Conformance testing checks that an implementation fulfills its specification. 
Several authors [8, 14, 30] have dealt with the problem of automatically generating 
test suites to test the conformance of an implementation under test (IUT) to its speci-
fication, where both specifications and IUT are expressed in the form of Labeled 
Transition Systems (LTS), Finite State Machines (FSM) or Input/Output LTS (de-
pending on the approach). 

Some interest has been devoted to Software Architecture-based conformance test-
ing [6, 7]. Given a software architecture (SA) description, conformance testing has 
been used to detect conformance errors between the SA specification and its imple-
mentation. The SA specification has been used as a reference model to which the 
source code should conform. 

One of the most challenging problems of SA-based conformance testing is the ne-
cessity of a common model that makes it possible to compare the expected behavior 
of a SA with its real implementation. A common model would bridge or map the 
elements from these two different abstractions, addressing the so called “mapping 
problem” or “traceability problem”. Traceability concerns “relating the abstract val-
ues of the specification to the concrete values of the implementation” (as quoted from 
[12]). Several researchers have recognized the importance and difficulty of this step 
[12, 32, 27], which has been deeply analyzed in [6].  

The main goal of this paper is to review and extend our previous work on SA-
based conformance testing, to provide a systematic way to use an SA for code testing. 
This research is driven by a previous analysis we performed in [7],  where we identi-
fied the factors making the distance between SA and code high. As a result, the de-
velopment process, the relationships among architectural components and the source 
code, and the SA-level of abstraction strongly influence that distance. If “explicit 
mapping rules (could) drive the source-code implementation from architectural com-
ponents, connectors, and messages” [7], then the mapping problem could be easily 
managed. 

In this paper, we propose a specialization and refinement of our general approach 
for SA-based conformance testing, in order to obtain a systematic approach for per-
forming code level conformance testing based on SA specifications. Here, we deal 
with this problem in a specific SA style, the C2 style [29, 10]. We show how the SA 
to code mapping rules imposed by the C2 framework helps to limit the mapping prob-
lem, and allows a systematic testing approach. 

This research is part of a project called SARTE (SA-based regression testing) [22], 
which aims to provide an approach and framework to test software architectures and 
code, when both are subject to changes. 

The rest of the paper is structured as follows: Section 2 provides an overview on 
Software Architecture-based Testing. Section 3 describes the research outline and our 
proposal. Section 4 describes the C2 architectural style and presents the case study 
used in this paper. Section 5 explains how the general approach mentioned in Section 
2 can be specialized to C2 style architectures. Some results from our experiment are 
presented in Section 6. We discuss some related work in Section 7, and our conclu-
sions and future work in Section 8. 
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2   Software Architecture-Based Testing: An Overview 

The topic of architectural testing has recently raised some interest [25, 4, 16, 27, 7].  
In [25], the authors define six architectural-based testing criteria, adapting specifi-

cation-based approaches; in [4] the authors analyze the advantages of using SA-level 
testing for reuse of tests and to test extra-functional properties. In [16] the author 
presents a discussion on the use of software architecture for testing. In [27], the au-
thors present an architecture-based integration testing approach that takes into con-
sideration architecture testability, simulation, and slicing. 

The approach proposed in [7] is, to the best of our knowledge, the first effort to 
tackle the whole cycle of SA-based testing with a comprehensive and concrete ap-
proach. It spans the spectrum from test derivation based on architecture dynamics 
down to test execution over system implementation.  

The general approach is composed by some logical steps which can be outlined 
with the help of Figure 1.  

In Step 0, a topological and behavioral specification of the SA is required.  
In Step 1, a software architect, by looking at the software architecture dynamics 

from different viewpoints, defines various testing criteria [5]. Each criterion high-
lights a specific perspective of interest for a test session and is realize through an obs-
function.  

Step 2 derives, through the selected obs-function, an Abstract LTS (ALTS), which 
still expresses all high-level behaviors we want to test, but hides any other irrelevant 
behavior.  

Step 3 uses the ALTS in order to select an architecture-level test suite. Each “archi-
tectural test” is a sequence of architecture-level actions meaningful  with respect to 
the testing criterion.  

Finally, Step 4 uses the architectural test cases to actually test whether the source 
code conforms to the architectural description. This step has to identify how SA-level 
abstract test cases can be related to concrete values of the implementation (i.e., trace-
ability/mapping among SA and code) and how the code may be run over the identi-
fied test cases. The traceability problem has been handled by using an informal 
“mapping” function while the execution traces are analyzed to check whether the 
system implementation works correctly with respect to the architectural tests.  

The goal of this paper is to improve and refine that work, in order to handle, in a 
systematic way, all the testing approach, as outlined in Section 3. 

 

 

Fig. 1. An Activity Diagram of a SA-based Testing. 
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3   Research Outline 

The SA-based testing process proposed in [7] is largely mechanical, but some impor-
tant human interventions are required.  

The test selection stage (steps 0 to 3) is systematic: the SA is formally specified 
using an ADL of a model-based specification, the LTS is automatically generated 
from the specification, the ALTS can be automatically generated using existing tools, 
the SA test selection process is implemented using existing tools to cover the ALTS.  

The test execution stage (step 4), instead, is informal and left to the software engi-
neer ability. In particular, a software engineer has to manually deal with the traceabil-
ity problem, i.e., “relating the abstract values of the specification to the concrete val-
ues of the implementation” [12]. This important problem has been already recognized 
by other researchers [32, 27] but never formally handled.  

In previous papers [6, 7], we managed such problem in a very general context, 
supposing that a well-formalized architecture-based development process was not in 
place (as happens in real world) and the SA specification and the low-level design 
have been intermixed without any formal mapping. One advised solution was to use 
some development support which explicitly adopts a formal mapping between archi-
tectural and implementation elements. 

In this paper we specialize and refine some of the activities presented in Figure 1. 
We choose a specific architectural style, the C2 style, which supports implementation 
and facilitates the mapping among SA-based and code-based test cases. We enrich the 
C2 structural specification with a behavioral one, to accommodate a behavioral model 
of the system. We reuse and adapt previous experience to identify and select relevant 
architectural test cases. In particular, we completely revise steps 3 and 4. 

We use existing tools (namely, Argus-I [2]) in order to run deterministic testing. 
We thus apply this technology to the Elevator case study, described in Section 4.2. 

4   Preliminary Information 

In this section we provide information which will be useful in the following. We 
outline the C2 style for describing software architectures and we present the Elevator 
case study, used in Section 5 to put in practice the proposed approach. 

4.1   C2 Style Software Architectures 

C2 [10, 29] is an architectural style introduced in 1995 by researchers from the Uni-
versity of California, Irvine. This style imposes some compositional and behavioral 
rules [29] enabling some level of independence (called “substrate independence”) 
between the components used to describe the SA.  

Components have visibility only on components up to them but they do not need 
any information on components beneath them. Moreover, communication may hap-
pen only through the explicit use of connectors. Each component and each connector 
exposes exactly two interfaces, to send “requests” and receive “notifications”; a re-
quest consists in requiring a service to other components while a notification identi-
fies the output of a request. “Links” are used to configure a C2 style architecture, by 
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relating component and connector interfaces. C2 components, connectors, interfaces 
and links can be visualized and analyzed using, for example, the Argus-I [2] tool. 

The C2 framework [10] helps software engineers to produce the actual implemen-
tation of the architecture. In the following, we assume our SA complies to the C2 
style and the implementation is realized through the C2 framework. 

4.2   The Elevator Case Study and Its Software Architecture 

Elevator systems have been widely used in testing and analysis literature because of 
two main reasons: everyone is familiar with elevator systems, and can easily under-
stand the requirements for such application domain; and these systems contain con-
current, stateful components and timing requirements, which give them a level of 
complexity that is interesting for verification purposes. 

In the configuration for our case study, the elevator system contains the building 
panel (which includes all the panels from different floors of the building), two eleva-
tor cars, and a scheduler algorithm to assign calls requested through the building to 
the closest elevator car. 

The components of this elevator system are: 

• ElevatorADT: this component maintains the information about the elevator 
car state, such as: motion {moving, stopped-closed, stopped-opened} and di-
rection {up, down}. In addition to state information, the ElevatorADT keeps 
a list of all the calls it needs to attend. 

• ElevatorPanel: this component represents the internal panel of an elevator 
car. After entering the elevator, the passenger can request calls through it, 
and see the current floor. 

• BuildingPanel: this component represents all the elevator call panels of the 
building. Through this component, users in different floors can request a call 
to the elevator system, indicating the desired direction. 

• Scheduler: this component receives call requests from the BuildingPanel, 
and selects which elevator should attend such call. In our case study we are 
using a “runtime” scheduling policy so that if a call is made at time “t”, it 
initially selects the elevator car (EC) that, at time “t”, could attend it with the 
lower waiting time required. At time “t+i”, i = {1, …, n}, the Scheduler 
checks if EC is still the best option, and, if it is not anymore, can switch to 
another elevator. This process is repeated until the call is served by one ele-
vator. 

• Synchronizer: this component synchronizes the elevator movements, so that 
all of them makes a move at the same time. 

5   Systematic Testing of C2 Style Architectures 

In this section we describe how the generic SA-based conformance code testing pro-
posed in [7] and outlined in Section 2 can be instantiated to C2 style architectures in 
order to become systematic. The theory is thus applied to the Elevator example de-
scribed in Section 4.2.  
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5.1   Step 0: SA Specification 

The system software architecture is modeled following the C2 style. Figure 2 shows 
the Elevator architecture, as visualized by Argus-I [2]. Many requests and notifica-
tions are sent and received by components, through the five connectors shown in 
Figure 2 (thick horizontal lines). Such requests are used to realize different services, 
like AddCall, CallAttended, GetId, Suspend Clock, Resume Clock. (The description of 
the C2 architecture, complete of requests and notifications, may be found in [23], 
Appendix A).  

It is to be noticed that the C2 specification is just structural, and a behavioral de-
scription of components and connectors interaction is missing. Some work has been 
done in the past on this direction, formalizing a portion of C2 in the Z specification 
language [19] or by using pre- and post-conditions, but they are still really prelimi-
nary. We thus decided to complement the C2 style specification with a behavioral 
one. We use the Finite State Process (FSP) [18] algebra. In this notation, each com-
ponent and each connector is represented through a process. The behavior of each 
process can be automatically represented through a Labeled Transition System (LTS) 
and those LTSs can be combined together (following the FSP semantics of composi-
tion) in order to produce a global LTS, describing how components and connectors 
work together. We choose this language, since it is tool supported (LTSA tool [17]) 
and we had previous experience with it. We modeled the behavior of each single 
Elevator component in FSP. The FSP specification for the Elevator architecture can 
be found in [23], Appendix B. 

By using the LTSA tool over the FSP specification, an LTS has been generated for 
each component. Such LTSs have been combined together generating a global LTS 
composed by 4288 states and 26336 transitions (before minimization), representing 
how the system evolves when different services are requested or notified. 

This model will be used in the following to extract SA-level test cases. 
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Fig. 2. The Elevator C2 style architecture. 
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5.2   Step1: Definition of an Observation 

In principle, the global LTS could directly be used as the reference model for deriving 
the test scenarios, assuming that an architectural test is essentially a sequence of sys-
tem actions meaningful at the architectural level. Unfortunately, by considering this 
global graph, it is very difficult to realize the testing selection stage [7], i.e., to “suita-
bly” select a set of test cases. In fact, the LTS provides a tremendous amount of in-
formation flattened into a graph (i.e., many messages, services, parallelism, interleav-
ing, many components interacting and so on). By identifying some testing criteria 
[5], we can select only such behaviors suitable for the criterion itself, abstracting 
away uninteresting behaviors. We can thus focus on a subset of relevant behaviors. 

An obs-function (as defined in [7]) which partitions LTS actions into “relevant in-
teractions” R (i.e., those we want to observe by testing) and “non-relevant interac-
tions” NR (i.e., those we are not interested in at this time) can realize such a testing 
criterion.  

In the context of a C2-FSP specification, we extend the concept of obs-function 
into structural and functional observations. A structural observation focuses on the 
SA topological description provided by C2. The software tester, looking at the C2 
specification, identifies components/messages/connectors she is more interested to 
test. A functional observation, instead, tries to capture relevant information from the 
behavioral model. With a functional observation, the tester can identify system func-
tionalities she is more interested to test.  

In this paper, due to space limitations, we describe one functional observation. 
The functional observation of interest is “all those behaviors involving the AddCall 
and CallAttended services”. In other words, we consider as “relevant” all and only, 
those interactions necessary to realize the AddCall and CallAttended services, while 
hiding the others. In the following, we refer to this testing criterion as the 
“AddCall+CallAttended” obs-function. 

5.3   Step 2: Derivation of the Abstract LTS 

An obs-function allows to derive an Abstract LTS (ALTS) which satisfies the crite-
rion itself and still expresses all high-level behaviors we want to test in the initial 
LTS. 

The AddCall+CallAttended observation has been produced by modifying the Ele-
vator FSP specification, hiding all such events not relevant for our testing criterion. 
The new FSP specification produces an ALTS composed by 41 states and 51 transi-
tions. This ALTS reduces the initial LTS by describing those requests and notifica-
tions related to the AddCall and CallAttended services only.  

It is to be noticed that the hiding operator does not delete the components from the 
specification. It just makes invisible the messages sent and received by the hidden 
components, still guaranteeing  the model correctness.  
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5.4   Step 3: Selection of a Test Suite over the Observed Behavior 

In code-based testing, a test case is usually defined as the input value provided to a 
program P, with the corresponding expected output. At the architecture level, a test 
case can be defined as: 

 

Definition: SA Test case 
An SA test case is an ordered sequence of architectural events observed when a cer-
tain initiating event is performed. 

 

This definition encompasses two different keywords: the sequence of actions, 
which represent expected behaviors, and the initiating event, that is, the architectural 
input which should allow the sequence to happen. 

The expected sequence of actions, for a certain testing criterion, can be extracted 
by applying a path coverage over the ALTS. Each ALTS path represents a sequence 
of expected architectural events. Many coverage criteria can be applied. A complete 
path coverage criteria can be applied when the ALTS dimension is reasonable, and 
when we are interested in a thorough coverage. In [7] we proposed to use McCabe’s 
path coverage criteria [31] in order to provide a less thorough coverage by identify-
ing only independent paths.  

In this paper, we adapt the category partition method [24]. Given a functional unit 
of interest, the category partition method requires to identify functional “parameters” 
and “environment conditions”. A parameter is an input to the functional unit while the 
environment condition is a characteristic of the system’s state at the execution time. 
Following the category partition method, mutually exclusive “choices” are identified 
for each parameter and condition (i.e., parameters and conditions values), “con-
straints” are identified for each choice (i.e., when a choice may occur) and “test 
frames” are identified by computing the cross-product of the different choices (i.e., 
choices are combined together). 

Given the ALTS for the AddCall+CallAttended obs-function previously defined, 
we applied the category partition method in order to select ALTS paths of interest. 
The AddCall service represents the functional unit of interest. The only input this 
service receives is the “add call” request from the Building Panel. There are no 
choices or constraints related to this input. However, there are many environmental 
conditions to be considered, as reported in Table 1 and described in the following: 

• The Scheduler selects which elevator should attend the call, based on the lower 
waiting time required. ADT0 or ADT1 can be selected to handle the call (condi-
tion #1, Table 1); 

• The Scheduler can check again which is the best elevator for the call, depending 
on a periodical check (condition #2, Table 1);  

• The Scheduler can reselect the elevator, if the check again condition is true. If 
the initial choice is still the best, the initial elevator attends the call, otherwise, 
there is a switch to another elevator (condition #3, Table 1). 

Table 1 describes the environmental conditions, with the possible choices and con-
straints. Table 2, instead, reports the test frames we are interested to test. Test frame 
#1, for example, means that we are interested to test the following behavior: the ele-
vator ADT0 is selected initially and a reselection process does not happen. 
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Table 1. Environmental Conditions, choices and constraints. 

# Environment Condition Choice Constraint 
1 Elevator selection (ES) ADT0 or ADT1 Lower waiting time 
2 Check again (CA) YES or NOT Periodical check 
3 Elevator reselection (ER)  ADT0 or ADT1 Lower waiting time 

 
Since the conditions, their choices and constraints were selected for the AddCall 

and CallAttented services, a mapping among the ALTS paths and the test frames is 
always possible. In our example, 144 complete paths were extracted from the selected 
ALTS and partitioned into the six test frames. Table 2, column three, says that 8 dif-
ferent paths satisfied test frame #1 and #4, while 32 paths satisfied the others (for a 
total of 144 different paths). Reusing the idea proposed in the category partition 
method, we can select one ALTS path for each test frame, as representative of the all 
set. The six representative paths are listed in [23], Appendix C.  

Table 2. Test Frames and ALTS paths. 

# Test Frames # of ALTS paths 
in the partition 

1 ES = ADT0, CA = NOT 8 
2 ES = ADT0, CA = YES, ER = ADT0 32 
3 ES = ADT0, CA = YES, ER = ADT1 32 
4 ES = ADT1, CA = NOT 8 
5 ES = ADT1, CA = YES, ES = ADT1 32 
6 ES = ADT1, CA = YES, ES = ADT0 32 

5.5   Step 4: Tests Execution over the Source Code 

This step describes how i) SA-level abstract test cases can be related to concrete val-
ues of the implementation (i.e., traceability/mapping among SA and code) and how 
ii) the code may be run over the identified test cases. We analyze those two distinct 
topics in the following subsections. 

Refinement of the Architectural Tests into Code-Level Tests 

One of the reasons we decided to start this research using the C2 style, instead of a 
generic SA, is that C2 is supported by the C2 framework [10], which dictates how C2 
style architectures have to be implemented. The C2 framework can be considered as a 
set of predefined abstract classes and interfaces that have to be implemented follow-
ing certain constraints when developing a C2 style architecture. The framework al-
lows the software engineer to implement a C2 style architecture in a straightforward 
manner: each architectural component is implemented by a Java component. Auxil-
iary classes can be introduced in order to implement specific aspects. SA events have 
exactly the same signature in the code and in the FSP architectural specification, the 
mapping is one-to-one based on signature matching.  
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Thanks to the strong relationship among a C2 specification and its implementa-
tion, the mapping between architectural test cases and code-level test cases may be 
performed systematically. In order to test the code conformance to a selected SA test 
case, we could run the code, make an elevator call and check if one of the architec-
tural test cases is traversed. However, depending on the system status (e.g., elevators 
floor and direction, call made in a specific floor to go up or down), all the 144 ALTS 
paths, in the six test frames, could be executed. This means that we need to refine the 
parameters and environment conditions previously identified in order to use an SA 
test case as an oracle. 

Let’s see how the refinement process may work, by using the ALTS path in Fig-
ure 3 (path #1 in [23], Appendix C). This path is representative of the test frame #1 in 
Table 2. We are interested to test if this specific behavior can be executed at the code 
level, when the constraints identified in test frame #1 are verified, that is, assuming 
that ADT0 has the lower waiting time (ES = ADT0) and the periodical check does 
not apply (CA = NOT). In order to refine path #1 (as any other path), we identified 
execution parameters which allow ADT0 to have the lower waiting time and the peri-
odical check not to apply. We found out that: 

• the waiting time constraint depends on the direction and current floor of the two 
elevators, on the floor the call is made, and on the direction the user wants to go; 

• the periodical check does not apply only when the building panel and the eleva-
tor ADT0 are at the same floor and the call has the same direction of ADT0. 

It means that path #1 has to be executed when BP(x,y), ADT0(x,y), ADT1(*,*) holds, 
that is, both BP and ADT0 are at the same floor “x”, BP makes a call to go up/down 
when ADT0 is going in the same direction “y” and ADT1 may be in a generic floor 
with a generic direction. 

Table 3 shows seven code-level test cases. Test case 7, for example, states that 
when the AddCall is sent, if both BP and ADT0 are at the third floor going up, ADT0 
should be selected to get the call and the ALTS path #1 should happen. 

Summarizing, the idea is to reproduce the initial condition so that the architectural 
test case should happen. This is not in general an easy step, but as shown in the next 
paragraphs, it is made mechanic thanks to the use of  Argus-I. 

Tests Execution 

Our pragmatic approach here is to make a deterministic [9] analysis of the code exe-
cution to observe the desired sequence. The deterministic approach forces a program 
to execute a specified test sequence by instrumenting it with synchronization con-
structs that deterministically reproduce the desired sequence. This determinist analy-
sis is performed through monitoring and debugging capabilities provided by Argus-I 
[2], by setting breakpoints during code execution. 
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Fig. 3. Architectural Test Case for the AddCall+CallAttended observation. 

Table 3. Mapping the SA path 1 to low level test cases. 

Test Path Test Case 
Path 1 1) BP(1,up) ADT0(1,up)  ADT1(1,up)   

 2) BP(5,down) ADT0(5,down)  ADT1(5,down)   
 3) BP(5,down) ADT0(5,down)  ADT1(5,up)   
 4) BP(10,down) ADT0(10,down)  ADT1(5,down)  
 5) BP(1,up) ADT0(1,up) ADT1(2,up)  
 6) BP(3,up) ADT0(3,up) ADT1(2,up)  
 7) BP (3,up) ADT0(3,up) ADT1(4,down) 

 

We force the system to be in a state described by the test case (as in Table 3), then 
we try to deterministically force the execution of one of the ALTS paths compliant 
with the test frame. 

When it is not possible to reproduce one of the expected architectural behaviors, 
the system implementation is not behaving as expected, i.e., it is not conform to the 
architecture specification. In such cases, an architectural error is revealed. 

6   Results and Considerations 

We used the C2 framework in order to produce a Java implementation of the Elevator 
system. Moreover, we produced a faulty version of the same system, injecting some 
faults. We thus tested the two systems for conformance to the six architecture level 
test cases selected in Section 5.2 (also listed in [23], Appendix C). 
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Table 4 summarizes relevant results. We used 42 (code level) test cases over the 
two versions of the code (V1 is the faulty implementation while V2 is the initial one). 
SA level test cases #3 and #6 (related to the test frames #3 and #6 in Table 2) de-
tected many faults in the code faulty version V1. These errors are due to the fact that, 
when a call request R is rescheduled from one elevator (A) to the other (B), while 
elevator B receives the AddCall(R) event, both elevators receive the RemoveCall(R) 
event. Therefore, since elevator B received a RemoveCall(R) just after the 
AddCall(R), it does not attend call R, which is left unattended by the elevator system. 

More importantly, SA level test case #4 (related to the test frame #4  in Table 2) 
detected a “real” error in both the original and faulty version. Basically what happens 
is that although elevator ADT1 was supposed to receive the AddCall event, elevator 
ADT0 is the one actually receiving it. 

Table 4. Results. 

SA test 
case # 

# of Code level  
test cases 

V1  
Faulty Implementation 

V2 
Original Implementation 

1 7 No faults detected No faults detected 
2 8 No faults detected No faults detected 
3 6 5 faults detected No faults detected 
4 7 1 fault detected  1 fault detected 
5 8 No faults detected No faults detected 
6 6 5 faults detected No faults detected 

In order to produce unbiased results, we performed this evaluation separately: one 
of the authors produced the SA specification of the system and the SA-level test cases 
while the other implemented the system, refined the SA test cases into code level test 
cases and run the test cases. 

The first consideration to be done is that C2 is used in this paper as representative 
of all such frameworks which support a code generation process. The interest of this 
research, in fact, is to analyze how a generic framework, supporting the code genera-
tion, may help to make systematic the testing process. Moreover, the assumption that 
the code generation process is driven by a superimposed framework is not to be con-
sidered too restrictive. Recent research is investigating how ADLs can support the 
generation of executable code [20, 25]. In particular, in [25] the authors analyze how 
ADLs are evolving in order to bridge the gap between a software architecture specifi-
cation and its implementation. Both Monroe [21] and Garlan [15] point out how 
skeletal code automatic generation may reduce implementation time. Moreover, Ae-
sop, C2, and Darwin generate skeletal code in C/C++ and Rapide executes the design 
code internally. Furthermore, MetaH is supported at the implementation level by Ada, 
and ArchJava. For more details, please refer to [25]. 

It may be of interest, for future research, to analyze how this experience may be 
reused in contexts different from C2. We expect that when the code generation proc-
ess is systematic, the testing process may be performed systematically too. 

Some problems we initially found were  how to run the code and deterministically 
analyze the code execution and how to identify parameters. Thanks to the Argus-I 
tool we overcame the first problem. Following the category partition method, we 
easily learned how parameters may be identified. 
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7   Related Work 

In this section we briefly present important research areas related to our approach.  
The topic of  specification-based conformance testing has been extensively ana-

lyzed by many authors [8, 30, 14] , as already pointed out in the Introduction. Com-
paring our approach with their, we can notice that we also use the SA-derived LTS as 
a reference model to derive test cases. However, all such approaches produce a model 
of the implementation under test and define some implementation relations (conf, 
ioconf, ioco, etc.) between code and specification. In our case, we do not assume to 
be able to produce an LTS model of the implementation thus we compare architecture 
level sequence of events with lower level execution paths. 

The topic of SA-based testing has been already discussed in Section 2. Again, the 
main difference between our and other approaches is the challenge to consider the 
whole cycle of SA-based testing, from architecture specification to test execution 
over system implementation.  

The difficulty of tracing information is not new, as already recognized in [12, 32, 
27]. Some relevant papers have been written on the topic. We can here mention refer-
ence [13] which shows a way to detect traceability between software systems and 
their model and proposes a list of interesting references on traceability techniques. 
Some work has been done in bridging the gap between requirements and software 
architectures (e.g., [28]), and much other work addresses requirements traceability. 
The problem of mapping abstract tests into the System Under Test is under study in 
the ongoing AGEDIS project [1]. 

8   Conclusions and Future Work 

In this paper we refine our previous experience [6, 7] on SA-based testing. While our 
previous papers were dealing with a generic architecture in a generic software devel-
opment process (without assuming any relationship between SA and code), we here 
make a stricter assumption on the software development process, in order to make 
more formal the full testing process.  

In particular, by adopting the C2 style architecture and the related C2 framework, 
we are able to systematically implement the test execution stage described in step 4, 
handling both traceability/mapping among SA and code execution over the identified 
test cases problems. By using C2, in fact, traceability is explicitly maintained between 
the architectural events and the code-level sequences while code execution is allowed 
through the Argus-I tool. 

In future work we want to investigate how a similar approach can be applied to 
those other ADLs which support code generation. Moreover, we want to apply this 
approach for SA-based regression testing, in the SARTE project [22].  

In the long term, we plan to use the experience gained in this paper in order to re-
lief some constraints. Our desire is to be able to specify and test architectures in a 
generic ADL (assuming that a behavioral model can still be produced). In particular, 
we would like to take a generic architecture described using the XADL ADL [11], 
providing a behavioral description in the form of state-based machine model, to im-
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plement this architecture using a component-based technology through a middleware 
(Java/RMI, COM+ of CORBA) and test the system implementation. 
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Abstract. Model checking is an effective tool in the verification of con-
current systems but can require skillful use. The choice of representation
for a particular system can make a substantial difference to whether the
verification will prove tractable. We present a method for improving the
choice of representation by effective use of communication structure. The
main contribution is a technique for selecting a communication structure
which yields a reduced search space whilst preserving the essential be-
haviour of a representation. We illustrate our method with examples
based on the model-checker Spin.

1 Introduction

Concurrent systems consisting of a number of communicating processes are
present in many real world applications. However, the complexity inherent in
communication and parallelism makes it difficult to build concurrent systems
that behave as intended without errors or failures.

One technique to aid in the construction of reliable concurrent systems is
model checking [2]. Model checking attempts to verify the behaviour of a system
by exploring all possible behaviours of that system, the state space, by checking
each behaviour against a set of properties which are expected to hold, or be
violated. This procedure can be expensive and for some systems the state space
may be too large for a complete search: the verification is thus intractable.

When verifying a real world system using model checking, a particular repre-
sentation (i.e. a model) of that system must be chosen. It is usually possible to
choose a variety of representations, any one of which would accurately represent
the behaviour of that system.

An illustration of this phenomenon is shown in figure 1. Each representation
consists of a model and an associated set of specified properties. Each represen-
tation results in a state space, often of differing size.

Choosing, or developing a representation for a system is analogous to the act
of converting a specification into a piece of software, often called programming.
In most cases, a large number of programs can be written to conform to a single
specification, and they may vary widely in time efficiency, space efficiency or
other measure of quality.
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System 
Specification

Model 1

System Description
+

Specified Properties

System Model
+

Specified Properties

Model 2
System Model

+
Specified Properties

Model n
System Model

+
Specified Properties

State Space 1 State Space 2 State Space n

Fig. 1. Alternative models and their state spaces.

Although these observations are relevant to all aspects of representing a sys-
tem for model checking, we will apply these notions to one specific area: that of
communication structure. In a concurrent system, the communication structure
is the method by which information passes between components. More precisely,
it refers to the data structures used for communication, and which processes may
access those data structures (to read or write). Specification languages for model-
checkers provide a number of constructs to represent communication structure.
How these constructs are used can have a considerable influence over the size of
the resulting state space.

Communication structure is most pertinent to asynchronous communication
since in synchronous systems, messages are transmitted instantaneously and thus
the choice of structure has little impact on the state-space. We therefore concen-
trate on asynchronous communication and the use of channels. The focus of this
work is not generic, internal data structures for model checking, but rather the
specific, source language data structures used in problem representation. The
inspiration to explore the relationship between communication structure repre-
sentation and state space was provided by [6] in which the author demonstrated
a reduction in state space for an example based on the logical linked protocol.

The main contribution of this paper is a technique for selecting a communi-
cation structure which preserves the essential behaviour of a representation and
yields a tractable search space. We assume the starting point is an intractable
initial representation. Therefore, our technique must be applicable without model
checking the initial representation.

The remainder of the paper is organised as follows. We open with a motivating
example before justifying the model checker we have chosen to illustrate our
technique (sections 2 and 3). Sections 4, 6, 7, 8 and 9 outline our technique
for demonstrating property preservation between communication structures and
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how good communication structures can be chosen. Section 10 provides a case
study. Finally, sections 11, 12 and 13 provide related work, further work and
conclusions.

2 Communication Structure

To illustrate how communication structure can influence the size of a resulting
state space, we present a simple example.

Consider the system shown in figure 2 with its two alternative communication
structures. Two users may send messages to one another along communication
channels. In the first case, two dedicated channels are used, a channel for each
direction. In the second case, communication in either direction is mediated by
a single shared channel.

User 0 User 1 User 0 User 1

Fig. 2. A simple system with alternative communication structures.

Assume that each user can only send one type of message and that each
channel can contain a maximum of one message. Table 1 enumerates the message
combinations for the shared and dedicated configurations: [] denotes all channels
empty, (user0,user1) a message from user0 to user1 and (user1,user0) a message
from user1 to user0. Note that a state where both messages are being passed
simultaneously is only possible for the dedicated structure; its state space size
is greater by 1.

Table 1. Enumeration of combinations for simple system.

Dedicated Shared
[] []

(user0,user1) (user0,user1)
(user1,user0) (user1,user0)

(user0,user1), (user1,user0) —

The simple system can be extended to three users, where the dedicated struc-
ture has 6 channels (2 between each user) and the shared structure 3 channels (1
between each user). Here the dedicated structure has 64 possible states while the
shared structure only 27. As the topology becomes more complex, the difference
in the number of combinations which can achieved with various communication
structures tends to increase.

It is clear that a change from a dedicated to a shared structure alters the
size of the state space in this simple example. However, these systems are not
isomorphic: one state is only reachable with the dedicated structure. There are
also differences in the possible series of events that that can occur. For example,
in the dedicated system, it is possible for a send event from user0 to immediately
follow a send event from user1; in the shared configuration, there must be a
receive event to clear the channel.
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This example demonstrates how a change to communication structure can
affect state space size but with a loss of certain behaviour. Whether such differ-
ences in behaviour influence the verification of specified properties for this system
is a primary question addressed by our work. A further question is which repre-
sentation will result in the smallest state space. We will consider some guidelines
for selecting a representation later, in section 9. For now we concentrate on the
more problematic issue of altering a representation, i.e. traversing the horizon-
tal arrows in figure 1. For alteration to be applicable, we must provide some
demonstration of equivalence between the initial and the altered system.

3 Spin and Promela

Our method is designed to apply to any systems that are modelled with asyn-
chronous communication. To validate the techniques we have constructed an
implementation based on the model checker Spin [5] and its accompanying spec-
ification language Promela. Spin applies state of the art, on the fly, model check-
ing techniques. Promela is a succinct and easy to use language that supports the
use of channels for communication. All the examples presented in this paper
were represented in Promela and model checked using Spin.

4 Communication Structure Alteration

In this section, we address communication structure alteration: altering the com-
munication structure of a representation to result in a smaller state space.

Communication structure alteration takes as input an initial representation
with an initial communication structure. The aim is to produce an alternative
representation which results in a smaller state space and which preserves the
specified properties of the initial representation. It is important to note that
only the specified properties must be preserved, other properties might change.

The procedure follows the following stages:

1. The initial representation is analysed including the extraction of the com-
munication structure.

2. Using a best communication structure framework (see section 9), a new
communication structure is selected that results in a smaller state space.
The initial representation with this new communication structure is referred
to as the candidate representation.

3. The initial and candidate representations are compared to test for property
preservation. Details of this procedure are in section 6. After comparison,
– If the candidate representation preserves the properties of the initial

representation, the candidate representation, with its smaller resulting
state space, can be used to verify specified properties of that system.

– If alteration is not property preserving, return to stage 2 and choose
another communication structure.
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A communication structure alteration only alters the communication struc-
ture: no other part of the system – for example, the number of components, the
behaviour of those components or which components interact with each other –
is altered.

Communication structure alteration should only be applied when the spec-
ified properties can be preserved by the alteration. Our method for testing
whether or not properties are preserved is described in section 6. Recall that
in most cases, the initial representation is intractable.

To illustrate the basic principles behind our technique, we apply them to a
small worked example. The example is described in the next section.

5 The Simple System in Promela

The example is taken from figure 2, with two processes User 0 and User 1,
instantiations of a generic process given in Promela by the following:

mtype = { send , r e c e i v e , u0 , u1 } ;
mtype l a s t a c t i o n [ 2 ] ;
proctype user ( chan inchan , outchan ; mtype myid , oppid )
{

do
: : outchan ! ( myid , oppid) −>

l a s t a c t i o n [ myid ] = send
: : inchan ? eva l ( oppid ) , eva l (myid) −>

l a s t a c t i o n [ myid ] = r e c e i v e
od

}
Promela has a C-like syntax. Briefly, mtype is a Promela keyword for an

enumerated type; so send, receive, etc. are constants. c!m denotes write m on
channel c, c?m denotes read m from channel c (destructive read). Statements
(e.g. assignments denoted by “=”) can be guarded by other statements, with
the form statement -> statement. The second statement executes only if the
guard is not blocked. The eval functions ensure that incoming messages must
match these variable values rather than overwriting them.

All channels are parameters: this allows us to instantiate the process with
either communications structures from figure 2 without having to alter the body
of the process. Promela representations to be used with our method must be
encoded in this way to allow the communication structure to be altered without
other changes to the representation.

The whole system consists of two instantiations of the process user, thus
assuming that chans is an array of channels, the initial representation would
use a separate channel for each parameter as shown below:

run user ( chans [ 0 ] , chans [ 1 ] , u0 , u1 ) ;
run user ( chans [ 1 ] , chans [ 0 ] , u1 , u0 )

and the candidate representation would use the same channel thus:
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run user ( chans [ 0 ] , chans [ 0 ] , u0 , u1 ) ;
run user ( chans [ 0 ] , chans [ 0 ] , u1 , u0 ) .

Note also that the send and receive statements in the process definition in-
clude variables denoting the intended recipient of the message. This is to prevent
a user process receiving its own message in a shared channel configuration. This
annotation of messages is necessary to ensure messages arrive as intended re-
gardless of communication structure.

5.1 Specified Properties

In Spin, properties are expressed using linear temporal logic (LTL) [11]. The
properties are as follows:

– User0 will eventually receive a message. This is expressed in LTL as ��p
where p is the boolean expression lastaction [0]==receive. We refer to this
property as user0 receive.

– There exists a reachable state where the last message action for both User0
and User1 are receive actions. This is expressed in LTL as �(p ∧ q) where
p is the boolean expression lastaction [0]==receive and q is the boolean ex-
pression lastaction [1]==receive. We refer to this property as both receive.

We now return to the task of testing for property preservation.

6 Property Preservation Testing

The communication structure alteration procedure described in section 4 re-
quires that we determine whether a specified property is preserved between two
alternative communication structures. In this section we present an overview of
our procedure for testing for property preservation which involves comparing
traces in message automata.

6.1 Message Automata

To compare alternative representations we use message automata, an abstrac-
tion we have devised to reason about communication structure. The message
automata for example system are shown in figure 3, the initial model on the left
and the candidate model is on the right.

Message automata consist of message states linked by message statements.
A message state is labelled with a name and the messages that are present on
all channels, messages that have been sent but not yet received, at that state.
We are only interested in whether messages have been sent or received: which
channels are used for their transit is irrelevant. A message statement is a Promela
statement that sends or receives a message, here prefixed by its (local) process
name.
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The two message automata in figure 3 differ by only a single state: the state
s3. This non-shared state is known as a difference state (denoted by a rectangle)
and is crucial to determining whether properties are preserved between the two
communication structures.

6.2 Traces

The key idea behind testing for property preservation is comparing traces
through the message automaton. In particular, we are concerned with difference
traces and emulating traces. A difference trace is a trace which exists in the
message automaton for one communication structure, but not for the other.
In the simple example, the trace s0s1s3 is a difference trace, since it can only
be achieved by the message automaton for the initial system. By definition,
every difference trace contains at least one difference state. An emulating trace
is a trace which emulates the behaviour of a difference trace with respect to
a specified property. To emulate a difference trace, the emulating trace must
match both the initial and final message states and must also match the effect
of the trace on a specified property. We will describe the exact meaning of effect
in section 6.4, in the next section we discuss how to reduce the number of traces
under consideration.

6.3 Difference Sub-traces

To reduce the emulation effort, we will emulate only difference sub-traces, illus-
trated in figure 4. The figure shows two disjoint sets of states (think of them as
rings, this is not a Venn diagram): an inner set containing the states shared by
the two message automata and an outer set containing the difference states. In
our example, the shared set would contain s0, s1 and s2 and the difference set
s3.

s0
[]

s3
[(u0,u1),(u1,u0)]

s1
[(u0,u1)]

s2
[(u1,u0)]

s0
[]

s1
[(u0,u1)]

s2
[(u1,u0)]

(a)

(b) (c)

(d)(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

(a) user0:chans[0]!u0,u1

(b) user1:chans[0]?eval(u0,u1)

(c) user0:chans[0]?eval(u1,u0)

(d) user1:chans[0]!u1,u0

(a) user0:chans[0]!u0,u1

(b) user1:chans[0]?eval(u0,u1)

(c) user0:chans[1]?eval(u1,u0)

(d) user1:chans[1]!u1,u0

Fig. 3. Message automata for the simple system. (left) Initial communication structure.
(right) Candidate communication structure.
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Shared 
states

Difference 
states

Emulating sub-trace
Difference sub-trace

Fig. 4. Emulating sub-trace illustration.

When emulating a trace, any sub-trace which exists only within the shared
set can be emulated by simply copying the appropriate transitions: the states are
common to both automata. Only when a trace enters the difference set is more
sophisticated emulation required. We can take advantage of this observation
by only emulating the difference sub-traces, the sections of a trace which enter
the difference set. Once the trace re-enters the shared set, direct emulation is
possible: an emulating trace for this section already exists since the shared set
of states and their transitions is identical in the two message automata.

From the simple example, consider the trace s0s1s3s2s0. The subtraces s0s1
and s2s0 use only shared states and can be emulated directly. We need only
find an emulating sub-trace for the difference sub-trace s1s3s2. This emulating
sub-trace must not only match the effect on a specified property, but also the
start and end states of the difference sub-trace. This would allow the emulating
sub-trace to form a direct substitution for the difference sub-trace as part of
a longer trace. In the example above, assume s1s0s2 is an emulating sub-trace
for the difference sub-trace s1s3s2. We can now use the emulating sub-trace to
substitute in the complete trace. The trace s0s1s0s2s0 has the same effect on a
specified property and contains no difference states: it is an emulating trace.

This principle can also be applied to traces of infinite length. For example,
consider the difference trace s0s1s3s2s0 where these states cycle infinitely often.
Assume that s1s0s2 is an emulating sub-trace for the difference sub-trace s1s3s2.
On each occasion the difference trace enters the difference sub-trace s1s3s2 we
can substitute the emulating trace s1s0s2; this provides an emulation of the
infinite trace.

Our approach is therefore to identify every possible difference sub-trace and
then to find an emulating sub-trace to emulate its behaviour using only non-
difference states.

This method can be thought of as an exhaustive search, as would be per-
formed by a Spin verification, of the difference behaviour for a system. As with
Spin, we are able to cope with traces that are potentially infinite by capturing
the finite number of effects on a property these traces may cause. With a fi-
nite number of effects, and a finite number of states which could begin and end
the difference sub-traces, there are also a finite number of difference sub-traces.
Some exceptional cases will be discussed in section 6.6.
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Note that an emulating sub-trace need not contain the same number of states
as its difference sub-trace, provided it starts and ends in the same place and
emulates the behaviour with respect to a specified property. How we determine
this behaviour is discussed in the next section.

6.4 Trace Effect

In Spin, a property is represented as a Büchi automaton. Transitions between
states are labelled by propositional logic formulae where the propositions are
boolean expressions from the Promela model, for example, the propositions p
and q from the examples in section 5.1. To verify a property, the automaton is
treated as a process and run concurrently (synchronously) with the model, with
property transitions traversed as the labelling conditions become true. It is the
sequence of property states which dictates whether the property will be true
or false. For more on the theoretical background to model checking temporal
properties, see [4].

To determine the effect of a trace, such as a difference trace, we determine
what variables will have values assigned by the statements associated with a
trace. From this, we can identify what possible sequences of property states will
occur. To ensure enough information for this analysis, we must carry in each
trace the possible property states along with the relevant variable values as they
are altered. By emulating difference sub-traces we make no assumption about
the property states or variable values at the start of the sub-trace and therefore
must check all combinations.

Consider the example difference sub-trace s1s3s2 and the specified property
user0 receive. The difference trace s1s3s2 corresponds to the message state-
ments {user1:chans [1]! u1,u0; user1:chans[0]?eval(u0,u1)}. By examining the
Promela representation in section 5 we can see that the first message event
causes the assignment lastaction [myid] = send. This assignment alters the
value of the variable lastaction [0] (for this particular process instance), which
is referenced in the proposition p in the property user0 receive. In this case,
the value is set to send, making the proposition false. This effect on the truth
value of the proposition will cause some transitions in the property automaton:
it is this effect that we must emulate. Note that other statements may only alter
variables which have no effect upon the specified property: such statements can
be safely ignored.

6.5 Emulation Checking

So far we have discussed only emulating an individual difference trace, but prop-
erty preservation testing involves checking all difference sub-traces. We call this
procedure emulation checking. Emulation checking works in two stages:

1. Identify all difference sub-traces and their effect on the specified property.
2. Attempt to find an emulating sub-trace for each difference sub-trace.
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In the first step, to identify all difference sub-traces, we identify all the mes-
sage states at which there is a transition to a difference state. From these states
we find all the traces that contain a number of difference states concluding with a
non-difference state. In the simple example, from the state s1 there are difference
sub-traces s1s3s1 and s1s3s2. From the state s2 there are difference sub-traces
s2s3s2 and s3s2s1. The effect of each difference sub-trace, on the specified prop-
erties, is then determined by the method described in section 6.4.

In the second step, we attempt to find emulating sub-traces for each difference
sub-trace. This part of the procedure is uncertain because the identification of
emulating sub-traces is based on heuristic search. There may be a variety of
routes that match the start and end states of a difference sub-trace and pass
through only non-difference states but we must find one which also matches the
effect of the difference sub-trace. Details of how we carry out this search and
various optimisations are detailed in [13].

6.6 Further Detail

Due to space constraints we have not described the full detail of the property
preservation test here. This includes dealing with ambiguous message states,
addressing infinite difference traces and reducing the effort of calculating trace
effect. This detail can be found [13].

7 Soundness and Completeness

It is crucial that our method is sound. If it is not sound, a user could believe
that a property was preserved when in fact it is not. This could lead to an unsafe
change to a communication structure — obviously undesirable. If our method is
not complete, some safe alteration will be rejected as not property preserving,
but then the user is back to where they started. Although they cannot verify
their system, at least they do not have an untrustworthy verification result. Our
method aims to be sound, but not necessarily complete. (Note, an algorithmic
method cannot be complete, if the initial representation is intractable.)

Throughout section 6 we have implicitly justified the soundness of our tech-
nique. In section 6.3 we described how even infinite difference traces must consist
of parts which can be emulated directly and difference sub-traces, of which there
are a finite number. In section 6.4 we described how to ensure we capture all the
possible behaviours which may be due to a difference sub-trace. In fact, there are
some cases in which our method is not sound, based on the use of control vari-
ables within the Promela representation. These are relatively specialised cases
and can be easily identified; for more detail, see [13].

The method is not complete because, as discussed in section 6.5, identifying
all emulating traces can be a difficult task which may not be achieved. In fact,
even if the identification of emulating traces was perfect, our method would
still not be complete because the method only determines whether any unique
behaviour exists, not whether this behaviour necessarily alters the verification
of a specified property.
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8 Implementation

We have implemented a tool based on the techniques described in section 6. The
tool is approximately 8000 lines written in the scripting language Python [8] and
interfaces with Spin as well as providing output via the graph drawing package
dot [7]. As input, the tool requires a system modelled in Promela using two
different communication structures and a specified property in the file format
used by Spin. As output, it returns whether the property is preserved between
the two structures. If the property is not preserved, it provides a trace for one
communication structure which cannot be emulated by the other. This tool was
used to generate the results presented in section 10.

9 Communication Structure Selection

Whether we are constructing a new representation or applying communication
structure alteration, we must be able to choose a communication structure that
will result in a small(er) state space. To achieve this, we have devised a set of
guidelines for choosing a communication structure.

In general, we cannot know which communication structure will result in
the smallest state space without model checking all conceivable communication
structures. So, for some unusual systems, these guidelines may not provide the
best choice of state space. However, intuition and empirical observation suggest
that they are effective in most cases.

Few Channels. As demonstrated by the example in section 2, a smaller number
of channels results in fewer combinations of messages. This in turn should
result in a smaller state space.

Short Channels. As with few channels, the shorter the channels the fewer
combinations and therefore the smaller the state space.

Use Exclusive Send/Exclusive Receive. Spin includes constructs to im-
prove the application of partial order reduction [10] to communication
operations. As far as possible within the other guidelines, channel structures
which make use of these constructs should be employed.

Avoid Too Many Shared Channels. If channels are shared between more
than 2 groups of processes it is very common for deadlocks to be created.
To maintain a model without deadlocks, too many shared channels should
be avoided.

10 Case Study

To illustrate our method, we expand the simple example from section 2.

10.1 System Description

The system we have chosen to model is based on the simple system with three
users, where each process is an Email relay server, transmitting Email messages
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to the other servers. Once the Email arrives at the server it is either read or
discarded by its intended recipient. To introduce some extra complexity into the
model, each relay is capable of sending either legitimate Email or unsolicited junk
Email, also known as spam. If a particular relay sends more than a fixed number
of spam Emails, it is placed on a block list, and no further Emails from this relay
are read — they are received, but immediately discarded. The identification of
a message as spam is assumed to be perfect.

10.2 Specified Properties

We consider three specified properties, which we describe informally by:

– no spam spam messages are received but are not read.
– blocked once a relay is blocked, its messages are never read again.
– arrival unless a relay is blocked, sent non-spam messages are eventually

read.

10.3 Communication Structures

The communication structures are as shown in figure 2 with three users. The
initial structure, i.e. case (a), uses dedicated channels, one for each connection.
The candidate structure, i.e. case (b), uses shared channels, where one channel
is used to connect each pair of processes. In both cases all channels are of size 1.

10.4 Property Preservation Test Results

Applying our property preservation testing method to the example shows that all
three properties are preserved. For detailed statistics about each run, see [13]. In
summary, in the worst case the message automata for the initial and candidate
representations were of size 1745 and 112 respectively and this resulted in a total
of 356 difference sub-traces comprising 11970 trace states. The longest run of
the tool took around half an hour.

10.5 Spin Results

Table 2 shows the results of using Spin to verify the specified properties with both
representations1. In this table, N/A indicates that Spin was unable to complete
an exhaustive search with the available memory.

From this table we can see that in each case, the number of states in the
candidate communication structure is less than that of the initial communication
structure. In the case of the properties blocked and arrival, state spaces which
were previously intractable — too large to fit into available memory — have been
made tractable by altering the communication structure. In the no spam case,
where both the initial and the candidate models are tractable, Spin confirms
that the properties are preserved (and the candidate state space is smaller).

This case study shows that our method yields smaller state spaces, and is
applicable to systems with (initially) intractable state spaces.
1 These tests were run with a PC running Linux, with memory set to 1GB.
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Table 2. Spin verification results.

Result States Stored
Initial Candidate Initial Candidate

no spam True True 6.67341e+06 1.27515e+06
blocked ? True N/A 5.59176e+06
arrival ? True N/A 9.11464e+06

11 Related Work

The idea that alteration of a Promela representation to reduce the state space
has also been presented in [12]. The results presented in [12] is more from the
perspective of a Promela programmers guide, whereas we aim for a more rigorous
semantic equivalence.

The construction of a communication automaton is similar to the use of
slicing [14,9], since it slices away non-communication behaviour. Our method
differs from slicing in that it attempts a more radical alteration of the Promela
code. Instead of simply trimming away parts of the model which are unnecessary,
we alter the underlying structure of the system.

In [3], the authors describe the abstraction of communication channels in
Promela to explore an otherwise intractable search space. They advocate re-
ducing the number of messages that are passed. Like our work, [3] recognises
the significance of communication however, the authors apply abstraction to the
messages on the channels, rather than by altering the communication structure.

12 Limitations and Further Work

The difficulty of identifying emulating traces makes our prototype tool fairly
slow: some of the results presented took several hours to generate. A more effi-
cient implementation would make the method more accessible.

The communication structure choice guidelines are a good starting point,
but would be difficult to apply them automatically. An algorithmic method for
choosing good communication structures would be preferable.

13 Conclusion

We have proposed a method for reducing the state space size for a model of a
communicating system by altering the communication structure. We have pro-
vided guidelines for choosing an appropriate communication structure, and pre-
sented a method for determining property preservation between two models with
different communication structures. We have also presented an example which
shows these principles in action. The major contribution is a method which is
applicable even when the initial representation is intractable. The method is
sound (except for a few special cases), but not necessarily complete.
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Abstract. This paper presents a systematic consideration of the major issues in-
volved in translation of executable design level software specification languages
to directly model-checkable formal languages. These issues are considered under
the framework of integrated model/property translation and include: (1) transla-
tor architecture; (2) semantics translation from a software language to a formal
language; (3) property specification and translation; (4) transformations for state
space reduction; (5) translator validation and evolution. Solutions to these issues
are defined, described, and illustrated in the context of translating xUML, an ex-
ecutable design level software specification language, to S/R, the input formal
language of the COSPAN model checker.

1 Introduction and Overview

Model checking [1,2] has major potential for improving reliability of software systems.
Approaches to software model checking can be roughly categorized as follows:

1. Manually creating a model of a software system in a directly model-checkable formal
language and model checking the model in lieu of the system;

2. Subsetting a software implementation language and directly model checking pro-
grams written in this subset;

3. Subsetting a software implementation language and translating this subset to a di-
rectly model-checkable formal language;

4. Abstracting a system implemented in a software implementation language and trans-
lating the abstraction into a directly model-checkable formal language;

5. Developing a system in an executable design level software specification language
and translating the design into a directly model-checkable formal language;

6. Model checking a property on a system through systematic testing of the execution
paths associated with the property.
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Categories 3, 4, and 5 cover a large fraction of the approaches to software model
checking, such as [3,4,5,6,7,8], all of which require translation from a software language
or an abstraction specification language to a directly model-checkable formal language.
Translation helps avoid the “many models” problem: as a system evolves, models of
the system are manually created and may contain errors or inconsistencies. Translation
also enables application of state space reduction algorithms by transforming the designs,
implementations, and abstractions being translated. There has, however, been little sys-
tematic consideration of issues involved in translating software specification languages
used in software development to directly model-checkable formal languages.

This paper identifies and formulates several major issues in translating executable
design level software specification languages to directly model-checkable formal lan-
guages. Solutions to these issues are defined, described, and illustrated in the context of
developing the translator [8] from xUML [9], an executable design level specification
language, to S/R [10], the input language of the COSPAN [10] model checker. (Another
translator [11], which translates SDL [12] to S/R, is also referred to as we discuss issues
related to reuse of translator implementation.)

Model checking of a property on a software system via translation only requires
that the behaviors of the system related to the property be preserved in the resulting
formal model. The artifact to be translated consists of a model of a software system
and a property to be checked. This integrated model/property translation provides a
natural framework for generating a formal model that preserves only the behaviors
required for model checking a given property and has a minimal state space. Under
this framework, the following issues in translation of executable design level software
specification languages have been identified and formulated in developing the xUML-
to-S/R translator:

– Translator architecture. The architecture of translators should simplify imple-
mentation and validation of translation algorithms and transformation algorithms
for state space reduction, and also enable reuse of these algorithms.

– Semantics translation from a software language to a formal language. Model
checking of software through translation requires correct semantics translation from
a software specification language to its target formal language. The semantics of the
source software language and the semantics of the target formal language may differ
significantly, which may make the translation non-trivial.

– Property specification and translation. Effective model checking of software re-
quires specification of properties on the software level and also requires integrated
translation of these properties into formal languages with the system to be checked.

– Transformations for state space reduction. Many state space reduction algorithms
can be implemented as source-to-source transformations in translators.

– Translator validation and evolution. Translators must be validated for correctness.
They must be able to adapt to evolution of source software languages and target
formal languages, and incorporation of new state space reduction algorithms.

These issues arise generally in translation of software specification languages for
model checking. We have chosen executable design level software specification lan-
guages as our representations for software systems for the following reasons:
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– These languages are becoming increasingly popular in industry and development
environments for these languages are commercially available.

– These languages have complete execution semantics that enable application of test-
ing for validation and also enable application of model checking for verification.

– A design in these languages can be compiled into implementation level software
specification languages and also can be translated into directly model-checkable
formal languages. This establishes a mapping between the implementation of the
design and the formal model of the design that is model checked, which avoids the
“many models” problem.

– These languages require minimal subsetting to enable translation to directly model-
checkable formal languages.

The balance of this paper is organized as follows. In Sections 2, 3, 4, 5, and 6, we
elaborate on these issues and discuss their solutions in the context of the xUML-to-
S/R translator. We summarize several case studies using the xUML-to-S/R translator in
Section 7, discuss related work in Section 8, and conclude in Section 9.

2 Translator Architecture

This section presents a general architecture for translators from software specification
languages to directly model-checkable formal languages and briefly discusses the func-
tionality of each component in this architecture. The emphasis is on the Common Ab-
straction Representation (CAR), the intermediate representation of the translation pro-
cess. Many of the important functionalities of translators are implemented as source-to-
source transformations on the software model to be translated or on the CAR.

2.1 A General Architecture for Translators

A general architecture for translators is shown in Figure 1. A notable feature of this
architecture is that the software model and the property to be checked on the model are
processed in an integrated fashion by each component. The frontend of the translator not
only constructs theAbstract SyntaxTree (AST) of the software model, but also transforms
the AST with respect to the property by applying source-to-source transformations such
as the loop abstraction [13]. These transformations are partially guided by directives
written in an annotation language to be discussed in Section 5.1. Functionalities of other
components are discussed in Section 2.2 after we introduce the CAR.

2.2 Common Abstraction Representation (CAR)

A CAR is a common intermediate representation for translating several different software
languages. It captures abstract concepts of the basic semantic entities of these languages
and is designed to be a minimal representation of the core semantics of these languages.
A CAR has been derived for the development of the xUML-to-S/R and SDL-to-S/R
translations. The basic entities in this CAR include a system, a process, a process buffer,
a message type, a message, a variable type, a variable, and an action. A process entity is
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Fig. 1. Translator architecture

structured as a graph whose nodes are states, conditions, and actions and whose edges
are transitions. Actions are input, output, assignment, and etc.

Entities in a CAR may have parameterized definitions. Semantics of such entities
can be exactly specified only by referring to a specific source language. For instance,
in an xUML process, actions are associated with states while in a SDL process, actions
are associated with transitions. For translation of a specific source language, a profile
of the CAR is defined. The profile is a realization of the CAR which includes the CAR
entities necessary for representing the source language and realizes the CAR entities
with parameterized definitions according to the semantics of the source language. Each
model in the source language is represented by an instance of the CAR profile. The
CAR profile thus inherits its semantics from the source language. This semantics is
mapped to the semantics of a target language by a translator backend. CAR profiles for
different source languages require different translation backends to a target language.
These backends share translation procedures for a CAR entity if the entity has the same
semantics in the corresponding source languages. Semantic entities of a source language
that are not in the CAR are either reduced to the entities that are in the CAR or included
as extensions in the CAR profile for the source language. Having a CAR and different
CAR profiles for different source languages offers the following benefits:

– A CAR profile only contains the necessary semantic entities for a source language.
Therefore, it is easier to construct and validate the translation from the CAR profile
to the target language than the direct source-to-target translation.

– The simplicity of the CAR profile simplifies the implementation and validation of
transformations for state space reduction.

– The CAR enables reuse of the translation algorithms and the transformation algo-
rithms for the semantic entities shared by different profiles of the CAR.

There is often a significant semantics gap between a source language and a target
language, which makes a single-phase direct translation difficult. Having a CAR allows
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us to divide the translation from a source language to a target language into three phases:
(1) the CAR instance construction phase, (2) the CAR instance transformation phase,
and (3) the target language code generation phase.

In the CAR instance construction phase, a model in the source language is scanned,
parsed, and transformed, and a CAR instance is then constructed. Complex semantic
entities in the model are reduced to basic semantic entities in the CAR. For instance, in
xUML, there are several different loop structures in the action language such as a for
loop, a while loop, and a do loop. All these loop structures are reduced to a simple loop
structure composed of a condition, the loop body, and goto actions. Implicit semantic
entities are made explicit in the CAR instance. For instance, there is an implicit message
buffer for each class instance in an xUML model, which is not explicitly represented in
the xUML model. To be translated, such buffers are made explicit.

In the CAR instance transformation phase, the CAR instance is transformed by
source-to-source transformations for state space reduction. CAR provides a common
representation on which transformations for state space reduction such as static partial
order reduction [14] can be implemented. Since the CAR profiles for different source lan-
guages share semantic entities, transformations implemented on these semantic entities
may be reused in translation of different source languages.

In the target language code generation phase, a model in the target language is
generated from the transformed CAR instance. For each semantic entity in the CAR, a
code generation procedure is defined. As the AST of a CAR instance is traversed, if a
semantic entity is identified, the corresponding code generation procedure is invoked to
emit codes in the target language. An entity in the CAR may have different semantics
when used in translation of different source languages. Therefore, the code generation
procedures for translating this entity may be different for different source languages. For
instance, in xUML each class instance has a message buffer while in SDL each process
has a message buffer. However, in xUML and SDL the message buffers have different
semantics. In xUML, a class instance can consume, discard, and throw an exception on
a message in its message buffer. In SDL, a process can save a message in its buffer and
consume it in the future. The translation procedures for translating an xUML message
buffer and an SDL message buffer are, therefore, different.

3 Semantics Translation
from Software Language to Formal Language

To translate a software language for model checking, a proper target formal language
must be selected. After selection of the target language, a translatable subset of the
software language is derived. This subset is mapped to the CAR by reducing complex
semantic entities in the source language to simple semantic entities in the CAR. The
simplified semantics of the source language is then simulated with the semantics of the
target language. We discuss these steps in the context of the xUML-to-S/R translation.

3.1 Selecting Target Formal Language

There are many directly model-checkable formal languages. Promela [15], SMV [16],
and S/R [10] are among the most widely used. These languages have various semantics.
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Their corresponding model checkers, SPIN [15], SMV [16], and COSPAN [10], support
different sets of search algorithms and state space reduction algorithms. Appropriate
selection of a target formal language should consider three factors: application domain,
semantics similarity, and model checker support. These three factors were considered
synergistically in selecting the target language for translating xUML.

– Application domain. While this paper is concerned only with translation of a soft-
ware design, the ultimate goal of this project is hardware/software co-verification.
xUML is widely used in development of embedded systems which often requires
hardware/software co-design and co-verification. Such a system, at least on different
levels of abstraction, may exhibit both hardware-specific (tighter synchronization)
and software-specific (looser synchronization) behaviors.

– Semantics similarity. The asynchronous interleaving semantics of xUML is close
to the semantics of Promela, which would simplify the translation, while both SMV
and S/R have synchronous parallel execution semantics.

– Model checker support. In practical model checking, especially in co-verification,
the widest range of search algorithms and state space reduction algorithms is de-
sired since it is not clear that any of these algorithms is superior for a well-identified
class of systems. A system that has both software and hardware components may
often benefit from symbolic search algorithms based on BDDs and SAT solvers
which are not available in SPIN. SMV provides BDDs and SAT based symbolic
search algorithms. However, Depth-First Search (DFS) algorithms with explicit state
enumeration, which have demonstrated their effectiveness in verification of many
software-intensive systems, are not available in SMV. COSPAN offers both symbolic
search algorithms and DFSs with explicit state enumeration. In addition, COSPAN
supports a wide range of state space reduction algorithms such as localization reduc-
tion [10], static partial order reduction [14], and a prototype implementation [17] of
predicate abstraction.

Based on the above, we selected S/R as the target language at the cost of a non-trivial
xUML-to-S/R translation.

3.2 Subsetting Software Language

Software languages such as xUML may have multiple operational semantics and may
also have semantic entities not directly translatable to the selected target language. For
model checking purposes, a subset of the software language must be derived for a
given application domain. This subset must have a clean operational semantics suitable
for the application domain. Semantic entities that are not directly translatable, such
as continuous data types, must be either excluded from the subset or discretized and
simulated by other semantic entities. Infinite-state semantic entities may be directly
translated or be bounded and then translated depending on whether the target language
supports infinite-state semantic entities or not. If a target formal language permits some
infinite-state semantic entities, necessary annotations may also need to be introduced for
the subset so that infinite-state semantic entities in the subset can be properly translated.

In the xUML-to-S/R translation, we adopt an asynchronous interleaving semantics
of xUML (see Section 3.4) while xUML has other semantics such as asynchronous
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parallel. Continuous data types such as float can be simulated by discrete data types
such as integer if such a simulation does not affect the model checking result. Since
S/R does not support infinite semantic entities, infinite data types and infinite message
queues must be bounded implicitly by convention or explicitly by user annotations.

3.3 Mapping Source Software Language to CAR

After the translatable subset of the source software language is derived, a CAR profile
is identified accordingly. The CAR profile only contains the basic entities necessary for
representing the source language subset. A mapping is then established from the source
language subset to the CAR profile. Complex semantic entities in the source language are
reduced to simple semantic entities in the CAR. For instance, in xUML a state action can
be a collection action that applies a sub-action to elements of a collection in sequence.
The collection action is reduced into a loop action with a test checking whether there
still are untouched elements in the collection, and with the sub-action as the loop body.
After the mapping is established, the semantics of the CAR profile is decided by the
semantics of the source language and the mapping.

3.4 Simulating Source Semantics with Target Semantics

The mapping from the source language to the CAR profile removes complex semantic
entities from the source semantics. To complete the translation from the source language
to the target language, only this simplified form of the source semantics must be simulated
with the target semantics. We first sketch the semantics of xUML and S/R, then discuss
how the asynchronous semantics of xUML is simulated with the synchronous semantics
of S/R and how the run-to-completion requirement of xUML is simulated.

Background: Semantics of xUML and S/R. xUML has an asynchronous interleaving
message-passing semantics. In xUML, a system consists of a set of class instances. Class
instances communicate via asynchronous message-passing. The behavior of each class
instance is specified by an extended Moore state model in which each state may be
associated with a state action. A state action is a program segment that executes upon
entry to the state. In an execution of the system, at any given moment only one class
instance progresses by executing a state transition or a state action in its extended Moore
state model. S/R has a synchronous parallel semantics. In S/R, a system consists of a
set of automata. Automata communicate synchronously by exporting variables to other
automata and importing variables from other automata. The system progresses according
to a logical clock. In each logical clock cycle, each automaton moves to its next state
according to its current state and the values of the variables it imports.

Simulation of Asynchrony with Synchrony. The asynchronous interleaving execution
of an xUML system is simulated by the synchronous parallel execution of its corre-
sponding S/R system as follows. Each class instance in the xUML system is mapped
an automaton in the S/R system. An additional automaton, scheduler, is introduced in
the S/R system. The scheduler exports a variable, selection, which is imported by each
S/R automaton corresponding to an xUML class instance. At any given moment, the
scheduler selects one of such automata through setting selection to a particular value.
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Only the selected automaton executes a state transition corresponding to a state transi-
tion or a state action in the corresponding xUML class instance. Other automata follow
a self-loop state transition back to their current states.

The asynchronous message-passing of xUML is simulated by synchronous variable-
sharing of S/R through modeling the message queue of a class instance as a separate S/R
automaton. Let automata IP1 and IP2 model two class instances and automata QP1 and
QP2 model their corresponding private message queues. The asynchronous passing of
a message, m, from IP1 to IP2 is simulated as follows: [1: IP1 → QP2] IP1 passes
m to QP2 through synchronous communication; [2: Buffered] QP2 keeps m until IP2
is ready for consuming a message and m is the first message in the queue modeled by
QP2. [3: QP2 → IP2] QP2 passes m to IP2 through synchronous communication.

Simulation of Run-to-Completion Execution. A semantic requirement of xUML is
the run-to-completion execution of state actions, i.e., the executable statements in a state
action must be executed consecutively without being interleaved with state transitions
or executable statements from other state actions. This run-to-completion requirement is
simulated as follows. An additional variable, in-action, is added to each S/R automaton
corresponding to an xUML class instance. All in-action variables are imported by the
scheduler. When an automaton is scheduled to execute the first statement in a state action,
it sets its in-action to true. When the automaton has completed with the last statement
in the state action, it sets its in-action to false. The scheduler continuously schedules the
automaton until its in-action is set to false.

4 Property Specification and Translation

Since the entire translation process is property-dependent, properties must be specified
at the level of and in the name space of software systems. Additionally, software level
property specification enables software engineers who are not experts in model checking
to formulate properties. We discuss software level property specification and translation
of software level properties in terms of xUML and a linear-time property specification
language, but the arguments carry over for other software specifications and temporal
logics. Two issues related to property specification and translation: (1) automatic gen-
eration of properties and (2) translation support for compositional reasoning, conclude
this section.

4.1 Software Level Property Specification

An xUML level property specification language, which is linear-time and with the ex-
pressiveness of ω-automata, has been defined. This language consists of a set of property
templates that have intuitive meanings and also rigorous mappings into the FormalCheck
property specification language [18] which is written in S/R. The templates define pa-
rameterized automata. Additional templates can be formulated in terms of the given
ones, if doing so simplifies the property specification process. A property formulated
in this language consists of declarations of propositional logic predicates over semantic
entities of an xUML model and declarations of temporal predicates. A temporal pred-
icate is declared by instantiating a property specification template: each argument of
the template is replaced by a propositional logic expression composed from previously
declared propositional predicates.
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To further simplify property specification, for an application domain, frequently used
property templates and customized property templates are included in a domain-specific
property template library based on previous verification studies in the domain. These
property templates are associated with domain-specific knowledge to help software en-
gineers select the appropriate property templates. A similar pattern-based approach to
property specification was proposed by Dwyer, Avrunin, and Corbett in [19].

4.2 Property Translation

To support the integrated model/property translation, once the property specification
language is defined, semantic entities for representing properties are introduced as ex-
tensions to the CAR profile for the source software language. A model and a property
to be checked on the model are integrated in an instance of the CAR profile. In the
xUML-to-S/R translation, properties are translated by a module of the translator. Since
a property refers to semantic entities in the xUML model to be checked, this module
conducts syntax and semantic checking on a property by referring to the abstract syntax
tree constructed from the model. For each property template, a translation procedure is
provided, which maps an instance of the template to the corresponding semantic entity
in the CAR profile and ultimately to a property in S/R for use by COSPAN.

4.3 Automatic Generation of Properties

Certain types of properties, such as safety properties that check buffer overflows, can be
automatically generated during translation. Translators can apply static analysis tech-
niques that identify implicit buffers and generate properties for checking possible over-
flows of these buffers. For instance, in xUML, every class instance has an implicit
message buffer, which has the risk of buffer overflow. The xUML-to-S/R translator au-
tomatically generates a safety property for each message buffer. When the resulting S/R
model is model checked, the safety property will catch any buffer overflow related to
the message buffer being monitored. Automatically generated properties are integrated
into translation in the same way as user-defined properties.

4.4 Translation Support for Compositional Reasoning

Another application of the software level property specification language is in construct-
ing abstractions of components to be used in compositional reasoning [20] where model
checking a property on a system is accomplished by decomposing the system into com-
ponents, checking component properties locally on the components, and deriving the
property of the system from the component properties. A property of a component is
model-checked on the component by assuming that a set of properties hold on other
components in the system. These assumed properties are abstractions of other compo-
nents in the system and are used to create the closed system on which the property of
the target component to be verified is model checked. These properties are formulated
in the software level property specification language. The assumed properties on other
components are called the environment assumptions of the target component. To sup-
port compositional reasoning, the translator is required to support translation of a closed
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system that consists of a component of a system and the environment assumptions of
the component. This is in contrast to model checking without compositional reason-
ing where the translator is only required to support translation of a closed system that
consists purely of entities specified in the software language, xUML in our case.

5 Transformations for State Space Reduction

The ultimate goal of integrated model/property translation is to generate a formal model
which preserves only the behaviors of the source software model required for model
checking a specific property and which has a minimal state space. Many state space re-
duction algorithms can be implemented as source-to-source transformations in the trans-
lation. This section describes model transformations implemented in the xUML-to-S/R
translation and a model annotation language used to specify some types of transforma-
tions. Similar transformations will surely be applied in translation from most software
specification languages to directly model-checkable formal languages.

5.1 Model Annotation Languages

There is often domain-specific information that is not available in a software model, but
can facilitate transformations for state space reduction, for instance, bounds for variables
in the software model. Software engineers can introduce such information by annotating
the model with an annotation language before the model is translated. Such annotations
are introduced in an xUML model as comments with special structures so that they will
not affect other tools for xUML, for instance, xUML model execution simulators. The
annotations must be updated accordingly as the model is updated.

Variable bounds are introduced in an xUML model as annotations associated with
the variables or the data types of the variables. Annotation-based variable bounding
indirectly enables symbolic model checking with COSPAN and also directly reduces
state spaces. If tight bounds can be provided for variables in a software model, it can often
significantly reduce the state space of the resulting formal model that is to be explored
by either an explicit state space enumeration algorithm or a symbolic search algorithm.
Model checking guarantees the consistency among variable bounds by automatically
detecting any possible out-of-bound variable assignments. The annotation language is
also used to specify directives for guiding the loop abstraction [13].

Model annotations not only enable transformations, but also are indispensable to
translation of continuous or infinite semantic entities in a software model. For instance,
in the xUML-to-S/R translation, the information about how to discretize a float type and
about the bounds for message buffers of class instances is also provided as annotations.

5.2 Transition Compression

A sequence of transitions in a software model can often be compressed and translated
into a single transition in the formal model if verification of the property does not require
intermediate states in the sequence. A transition compression algorithm can be generic,
i.e., can be applied to many software languages, or can be language-specific, i.e, utilizes
language-specific information to facilitate transition compression.
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Generic Transition Compression. We use a simple example to illustrate generic tran-
sition compression. Suppose a simple program segment is of the form x = 1; x = x+1.
If a property to be checked is not relevant to the interleavings of the two statements with
statements from other program segments, to the interim state between the two statements,
or to the variable, x, the program segment can be compressed into a single statement
x = 2 without affecting the model checking result. Similar transition sequences appear
in almost all programs in various software specification languages. Detailed discussions
on generic transition compression algorithms can be found in [21].

Language-Specific Transition Compression. There will be language-specific opportu-
nities for transition compression in most software specification languages.An illustration
of language-specific transition compression in the xUML-to-S/R translation is the iden-
tification and translation of self-messages. A self-message is a semantic feature specific
to xUML and some other message-passing semantics: a class instance can send itself a
message so that it can move from its current state to some next state according to a local
decision. (It is assumed that self-messages have higher priority than other messages.)
Sending and consuming of a self-message can be translated in a similar way as how
sending and consuming of common messages among class instances are translated. This
straightforward translation results in several S/R state transitions that simulate sending
and consuming of a self-message. We developed a static analysis algorithm that identi-
fies self-messages and translates sending and consuming of a self-message to a single
S/R state transition.

5.3 Static Partial Order Reduction (SPOR)

Partial order reduction (POR) [22,23,24] is readily applicable to asynchronous interleav-
ing semantics. POR takes advantages of the fact that in many cases, when components
of a system are not tightly coupled, different execution orders of actions or transitions
of different components may result in the same global state. Then, under some con-
ditions [22,23,24], in particular, when the interim global states are not relevant to the
property being checked, model checkers need only to explore one of the possible exe-
cution orders. This may radically reduce model checking complexity.

The asynchronous interleaving semantics of xUML suggests application of POR.
POR is applied to an xUML model through SPOR [14], a static analysis procedure that
transforms the model prior to its translation into S/R by restricting its transition structure
with respect to a property to be checked. For different properties, an xUML model may
be translated to different S/R models if SPOR is applied in translation. Application of
symbolic model checking to an S/R model translated from an xUML model transformed
by SPOR enables integrated application of POR and symbolic model checking.

5.4 Predicate Abstraction

Predicate abstraction [25] maps the states of a concrete system to the states of an abstract
system according to their evaluation under a finite set of predicates. Predicate abstraction
is currently applied in model checking of software designs in xUML by application of the
predicate abstraction algorithms proposed in [17] to the S/R models translated from these
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designs. It should be possible, however, to implement some forms of predicate abstraction
as transformations in translation. Research on application of predicate abstraction to
software system designs as they are translated is in progress.

6 Translator Validation and Evolution

Correctly model checking a software model through translation depends on correctness
of (1) the conceptual semantics mapping from the source software language to the tar-
get formal language, (2) the translator that implements the semantics mapping, and (3)
the underlying model checker that checks the resulting formal model. Correctness of
a semantics mapping can sometimes be proved rigorously. A proof for the semantics
mapping from xUML to S/R can be found in [26]. The translator must be validated to
ensure that it correctly implements the translation from the source language to the target
language and also the state space reduction algorithms incorporated. The correctness of
the model checker is out of the scope of this paper. As the source language and the target
language evolve, the translator must also evolve to handle (or utilize, respectively) se-
mantic entities that are newly introduced to the source (or target) language. The translator
also must evolve to incorporate new state space reduction algorithms.

6.1 Translator Validation

Testing is the most commonly used method for validating a translator. Testing of a
translator is analogous to, but significantly different from, testing of a conventional
compiler. Testing of a conventional compiler is most often done by use of a suite of
programs which are intended to cover a wide span of programs and paths through the
compiler. Testing of a translator from a software specification language to a model-
checkable formal language is a multi-dimensional problem. The test suite must be a cross-
product of models, properties, and selections of state space reduction transformations.
The correctness of a compilation can be validated by running the program for a spectrum
of inputs and initial conditions and determining whether the outputs generated conform
to known correct executions. While a translated model can be model checked, it is far
more difficult to generate a suite of models and properties for which it is known whether
or not a property holds on a model. We have a partial test suite for the xUML-to-S/R
translation and development of a systematic test suite is in progress. Development of
test suites is one of the most challenging problems faced by developers of translation-
based model checking systems. We believe this is a problem which requires additional
attention.

Recently, there has been progress on formal validation of the correctness of transla-
tors. The technique of translation validation is proposed in [27], whose goal is to check
the result of each translation against the source program and thus to detect and pinpoint
translation errors on-the-fly. This technique can improve, however cannot entirely re-
place the testing approach discussed above since the correctness of translation validation
depends on the correctness of the underlying proof checker.

6.2 Translator Evolution

The key to the evolution of a translator is the evolution of the CAR of the translator since
the CAR bridges the source software language to the target formal language and connects
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the translator frontend to the translator backend. Translation from the source language
to the CAR is relatively straightforward since the CAR is quite simple. The complexity
of the translation from the CAR to the target model-checkable language depends on
the complexity of the target language, but the latter are also usually simple and well
structured. The transformations conducted on the CAR are much more complex. The
principle for the CAR evolution is that the CAR should be kept stable as possible, and
existing translation algorithms and state space reduction algorithms should be reused
as much as possible. The CAR is extended (1) if there is no efficient way to translate
some semantic entities of a new source language, (2) if some semantic entities of a new
target language are hard to utilize, or (3) if implementation of new state space reduction
algorithms requires introduction of new semantic entities in the CAR.

7 Case Studies Using xUML-to-S/R Translator

The xUML-to-S/R translator has been applied in model checking designs of real-world
software systems: a robot control system [28] from the robotics research group at the
University of Texas at Austin, a prototype online ticket sale system [29], the TinyOS run-
time environment [30] for networked sensors from University of California, Berkeley.
The case study [31] on the robot control system demonstrated model checking of non-
trivial software design models with the translator. In the case study [32] on online
transaction systems, state space reduction capabilities of model transformations in the
translator and interactions of these transformations were investigated. The TinyOS case
study [33] demonstrated the translation support for compositional reasoning. Co-design
and co-verification studies on TinyOS using the translator are in progress.

8 Related Work

Most automatic approaches to model checking of design level software specifications
are based on translation. Translators have been implemented for various design level
specification languages such as dialects of UML, SDL, and LOTOS [34]. The vUML
tool [7] translates a dialect of UML into Promela. The translation is based on ad-hoc
execution semantics which did not include action semantics, and does not support spec-
ification of properties to be checked on the UML model level. There is also previous
work [35,36] on verification of UML Statecharts by translating Statecharts into directly
model-checkable languages. The CAESAR system [37] compiles a subset of LOTOS
into extended Petri nets, then into state graphs which are then model-checked by using
either temporal logics or automata equivalences. The IF validation environment [38]
proposes IF [39], an intermediate language, and presents tools for translating dialects of
UML and SDL into IF and tools for validation and verification of IF specifications.

The translator architecture presented in this paper extends the architecture for con-
ventional compilers. Similar extensions have been proposed in [37,38]. In these architec-
tures, intermediate representations that have fixed and complete semantics are adopted
while in our approach, the CAR does not have fixed and complete semantics. It only
specifies semantics of the generally shared semantic entities and for other semantic en-
tities, their semantics are decided when a CAR profile is defined for a specific source
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language. This enables reuse of translator development efforts while allowing flexible
translator development via a customizable intermediate representation.

A recent approach to model checking implementation level software representations
is an integrated approach based on abstraction and translation. Given a program in
C/C++ or Java, an abstraction of the program is created with respect to the property to
be checked. This abstraction is constructed in a conservative way, i.e., if the property
holds on the abstraction, the property also holds on the program. The abstraction is then
translated into a model-checkable language and model checked. If the property does not
hold on the abstraction, the error trace from model checking the abstraction is used to
determine if the error is introduced by the abstraction process. If so, the abstraction is
refined based on the error trace. The SLAM [3] tool from Microsoft, the FEAVER [6]
tool from Bell Labs, and the Bandera [4] tool from Kansas State University are sample
projects of this approach. SLAM abstracts a boolean program from a C program, then
directly model-checks the boolean program or translates the boolean program into other
model-checkable languages. FEAVER abstracts a state machine model from a C program
with user help and translates the state machine model into Promela. Bandera abstracts
a state machine model from a Java program and translates the state machine model
into Promela, SMV, and other model-checkable languages. Many of translation issues
identified in our project also appear in the translation phase of these three tools.

9 Conclusions

Translation plays an increasingly important role in software model checking and enables
reuse of mature model checking techniques. This paper identifies and formulates issues
in translation for model checking of executable software designs. Solutions to these
issues are presented in the context of the xUML-to-S/R translator. These solutions can
be adapted to address similar issues in translation support for model checking of other
design level or implementation level software representations.
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Abstract. Distributed applications rely on middleware to enable in-
teraction among remote components. Thus, the overall performance in-
creasingly depends on the interplay between the implementation of ap-
plication components and the features provided by the middleware. In
this paper we analyze Java components interacting through the RMI
middleware, and we discuss opportunities for optimizing remote method
invocations. Specifically, we discuss how to optimize parameter passing
in RMI by adapting fairly standard static program analysis techniques.
The paper presents our technique and reports about a proof-of-concept
tool enabling the analysis and the subsequent code optimization.

1 Introduction

Two major trends characterize the evolution of software technology during the
past decade. On one hand, software applications are increasingly distributed
and decentralized. On the other, off-the-shelf components are increasingly used
as building blocks in composing distributed applications. The gluing mechanisms
that support the assembly of components are provided by the middleware. Al-
though much progress has been achieved in supporting designers while develop-
ing distributed applications, it is still true that the level of support provided for
traditional centralized software is more mature.

Several techniques are available to optimize code generation for predefined
target architectures. Today’s challenge, however, is to deal with distributed ap-
plications where a conventional programming language is used to develop com-
ponents and a middleware layer is used to interconnect them. We are not aware
of optimization techniques that span over the two domains – i.e., the program-
ming language and the middleware. This is true also when the two are in the
same linguistic framework, as in the case of Java and RMI [10].

Providing these optimizations is precisely the goal of our work. We concen-
trate on parameter passing across network boundaries, when object methods are
invoked remotely and parameters are serialized. Serialization may introduce a
serious performance overhead for large objects. Furthermore, often only a small
part of an object is actually used remotely. In these cases, performance would
greatly improve if only the used portion of the object were transmitted.

In this paper we discuss how to achieve this optimization by statically ana-
lyzing the bytecode of a Java program, and then using the results to optimize the
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run-time object serialization. We use fairly standard static analysis techniques.
What is new in this paper is the way static analysis is used. Our technique
is particularly valuable when off-the-shelf components are used to build a dis-
tributed application. In this case, the designer has no visibility of the internals
of the components, and therefore many opportunities for hand-optimizing inter-
component interactions are necessarily missed. Moreover, since our technique
is aimed at reducing the communication overhead, it is particularly useful in
bandwidth-constrained scenarios, such as mobile computing.

The paper is structured as follows. Section 2 provides an overview of RMI.
Section 3 defines the problem and introduces a reference example. Section 4
describes our program analysis approach. Section 5 reports on a proof-of-concept
tool we developed to support our approach. Section 6 discusses limitations and
extensions for our technique. Section 7 briefly surveys related work. Section 8
ends the paper with brief concluding remarks.

2 Background

In this section we present the basics of serialization and RMI that are relevant
to our work.

2.1 Object Serialization

Serialization is the process of flattening a structured object into a stream of
bytes. It provides the basic mechanism to support I/O operations on objects,
e.g. to save them on persistent storage, or to transfer them across the network.

Serialization is accomplished in Java by using two I/O streams, ObjectInput-
Stream and ObjectOutputStream. When an object reference r is written to the
latter, the run-time recursively serializes its attributes until the whole graph
of objects rooted at r is serialized. In this process, primitive type attributes
(e.g. int) and null attributes are serialized by using a default format. Class
descriptors are also inserted in the serialization stream to provide the receiv-
ing side with enough information to locate the correct type at deserialization
time. Deserialization essentially proceeds backwards, by extracting information
from the serialization stream and reconstructing the object graph accordingly.
Interestingly, serialization preserves aliases within a single serialization stream.

The aforementioned process requires r and all the other object references
to belong to a type implementing the java.io.Serializable interface. The
programmer, however, retains control over the fraction of the object graph that
must be serialized. Although by default all the object attributes are serialized,
attributes that are prepended by the transient modifier are not. When the
object is reconstructed by deserialization, transient attributes are set to the
language default for their type.

2.2 Remote Method Invocation

In RMI, a line is drawn between remote objects and non-remote objects. A “re-
mote object is one whose methods can be invoked from another Java virtual
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machine, potentially on a different host” ( [10], §2.2). Remote objects are defined
programmatically by any class that implements the java.rmi.Remote interface
or a subtype thereof. All the other objects are simply called non-remote objects.

A reference to a remote object can be acquired by querying a lookup service –
or registry in the RMI jargon. The registry is a process that binds local objects to
symbolic names. Remote clients can query the registry by providing a symbolic
name, and obtain a network reference to the corresponding object.

A reference to a remote object can also be obtained through parameter pass-
ing. Object parameters can be passed in a remote method invocation either by
reference or by copy. If the object being passed is a remote object and it has been
exported to the RMI run-time, then the object is passed by reference, i.e., it is
accessed through the network. Instead, if the parameter is a non-remote object,
or a non-exported remote object, it is passed by copy. In this case, however, the
type of the object is required to implement the interface java.io.Serializable.
Primitive types are always passed by copy.

The semantics of parameter passing by copy is defined in Java RMI by object
serialization. The interplay between serialization and parameter passing, how-
ever, slightly complicates the picture. The first issue is aliasing. Since a single
serialization stream per remote method invocation is used, references to the same
object in the caller are mapped in the callee into references to the same serialized
copy of that object. Hence, parameters are not copied independently, as usually
happens in parameter passing by copy. The other issue has to do with serialized
objects containing references to remote objects. In this case, the behavior of RMI
is as follows ( [10], §2.6.5):

– If the object being serialized is an instance of Remote and the object is ex-
ported to the RMI run-time, the stub for the remote object is automatically
inserted in the serialization stream in place of the original object.

– If the object is an instance of Remote and the object is not exported to
the RMI run-time, or the object is not an instance of Remote, the object
is simply inserted in the serialization stream, provided that it implements
Serializable.

In essence, this preserves the semantics of object references in presence of
distribution. If the object o contains a remote object r in its object graph, the
serialized copy of o still accesses the original copy of r on the original node, if r
has been exported. Otherwise, r is treated just like any other ordinary object.

3 Motivation and Reference Example

Object serialization can be the source of severe inefficiencies in remote method
invocations. In Java – and object-oriented languages in general – objects are
often highly structured: composition quickly leads to pretty large object graphs.
If the object must be transferred to another host by a remote method invoca-
tion, performance may be affected severely. An overhead is introduced in terms
of both computation, as (de)serialization requires a recursive navigation of the
object graph, and communication, as large objects result in large serialization
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streams being transmitted. Most of the existing approaches focus on reducing
only the computational overhead [8, 1, 7, 2, 12]. They aim at improving the mid-
dleware run-time without considering the application code exploiting it and, in
particular, how the object is used after deserialization. In this paper, we take
the complementary approach of optimizing serialization to reduce communica-
tion overhead, based on how serialized objects are used on the server side.

Our goal is to optimize parameter passing for each remote invocation, by
serializing only a portion of the object and hence reducing the network traffic.
In fact, different invocations may access different portions of the remote objects
passed as serialized parameters. The proposed solution consists of (a) performing
static analysis to derive information about the portions of serializable parameters
that must be transmitted at each call point, and (b) using this information at
run-time to optimize serialization.

Let us consider a simple reference exam-
public interface IPrinter

extends Remote {
public void print(IPage page)

throws RemoteException;
}
public interface IPage

extends Serializable {
public IPageItem[] getWholePage();
public IPageItem[] getTextItems();
public IPageItem[] getGraphicItems();

}
public interface IPageItem

extends Serializable {
public void print(PrintStream ps);

}

Fig. 1. Interfaces of a simple print
service.

ple1, used throughout the paper. A simple
print service is provided by the IPrinter
interface shown in Fig. 1. Clients are ex-
pected to invoke the method print() by
passing the page to be printed as a param-
eter. Pages are made up of page elements;
their interfaces are also shown in Fig. 1.
Pages can contain text and/or graphical
elements. The methods exported by the
IPage interface allow one to retrieve ei-
ther or both. IPageItem exports a method
print(), which is invoked by the receiving
IPrinter and causes the actual printing of
the element on the device.

In our example, several implementations of IPrinter and IPage exist, corre-
sponding to different kinds of printing devices and of pages. Sample implemen-
tations (DotMatrixPrinter and MixedPage) are shown in Fig. 2. The client of
the printing service, however, ignores the kind of remote printer that is actually
being used; it simply invokes the print service. It is up to the server to perform
the requested service according to its own capabilities. For example, a dot-matrix
printer only prints the textual part of the page (see Fig. 2). Let us consider the
case where a composite page is to be printed on a printer that happens to be a
dot-matrix printer. Although only textual elements are going to be accessed by
the printer, all page elements are serialized and transferred to the server. This
is an example where serialization and transmission of a large unused portion of
an object generates unnecessary computational and communication overhead,
because the server only refers to a portion of the data. The client has no means
to avoid this unnecessary serialization – unless information hiding is broken.

We can draw generalized remarks from this example. Often the client has
no control over the server’s behavior. The server may change over time, due to

1 The complete source code of the example can be found in [4].
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public class DotMatrixPrinter
extends UnicastRemoteObject
implements IPrinter {
private PrintStream out = new DotMatrixPS();
public DotMatrixPrinter()

throws RemoteException { super(); }
public void print(IPage page)

throws RemoteException {
IPageItem[] text = page.getTextItems();
if (text != null)

for (int i = 0; i < text.length; i++)
text[i].print(out);

}
}

public class MixedPage
implements IPage{
private IPageItem[]pageItems;
public IPageItem[]getTextItems(){

TextItem[] text=
new TextItem[pageItems.length];

int j=0;
for(int i=0;

i<pageItems.length;
i++)

if (pageItems[i]
instanceof TextItem)
text[j++]=(TextItem)pageItems[i];

return text;
}
...

}

Fig. 2. Sample implementations of a printer (left) and a page (right).

dynamic binding, and different servers, though presenting the same interface,
may differ in their internal behaviors. Internal behaviors are not visible, either
because of a deliberate design choice, as in our example, or because they are hard-
wired in an off-the-shelf component, whose implementation is responsibility of a
third party and hence outside the designer’s control.

The next section presents a program analysis technique that enables run-time
optimization of remote method invocations. Situations like the one we described
can be detected automatically during a static analysis phase, to determine which
fields of a given object involved in a remote method invocation are actually used
by the target and which are not. The results of analysis can be exploited by
automatically generating code that selects the fields to be serialized for each
invocation, skipping the serialization of fields unused on the server side. Need-
less to say, our technique does preserves correctness of the application, i.e., it
guarantees that there will never be an attempt to access an object field that has
not been serialized.

4 Type-Based Static Analysis

This section describes our static analysis technique in a stepwise manner. We
begin by describing the overall analysis strategy, then introduce the notion of
concrete graph, which is central to our approach, and conclude by describing the
details of the analysis.

4.1 Overall View of the Method

For each remote method invocation r=o.m(p1, . . . , pn) and for each serializable
parameter pi ∈ {r, p1, . . . , pn}, we identify which attributes of pi need to be
copied through serialization and passed to the remote target object. To achieve
this goal, we focus our analysis on the types that can be instantiated through
a new operation. These types, called concrete types, include all primitive types,
and do not include any abstract class or interface.
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Our analysis technique is structured in the following phases:

1. Given the overall set of types constituting the application, determine:
(a) the set R of remote types, i.e., types that extend or implement Remote;
(b) the set S of serializable types. This includes primitive types (e.g., int)

and reference types that extend or implement Serializable. The dec-
laration of an array T[] causes the insertion in S of both T and the type
“array of T”.

2. Compute the set of concrete remote and serializable types, i.e., the subsets
Rc ⊆ R and Sc ⊆ S containing only concrete types.

3. For each class c ∈ Rc, identify the set M of methods that can be invoked
remotely. This includes all the methods belonging to the interfaces which
extend Remote and implemented by c.

4. For each remote invocation of a method m ∈ M, identify the set of param-
eters Pm that must be serialized, i.e., those for which at least one dynamic
type belongs to Sc.

5. For each parameter p ∈ Pm, identify the attributes of p for which serialization
can be safely skipped.

Phases 1-4 are quite straightforward, R = {IPrinter, DotMatrixPrinter}
Rc = {DotMatrixPrinter}

S = {IPage,MixedPage,
IPageItem,IPageItem[],
TextItem,TextItem[],
GraphicItem,GraphicItem[],
int,int[],int[][],char,char[]}

Sc = { MixedPage,
TextItem,TextItem[],
GraphicItem,GraphicItem[],
int,int[],int[][],char,char[]}

M = {print}
Pprint = {aPage}

Fig. 3. The relevant sets for the ref-
erence example.

and can be accomplished by inspecting the
code and the inheritance hierarchy. Fig. 3
shows their result for our reference exam-
ple. Phase 5 is the most complex and con-
stitutes the core of our analysis. In a remote
method invocation r=o.m(p1, . . . , pn), the
analysis is complicated by polymorphism.
In fact, a parameter pi of static type T can
be replaced at run-time by any subtype of
T . The same holds, recursively, for every
attribute of T . For each parameter pi and
for each attribute a potentially reachable from it, we must determine whether a
is used, and hence it must be serialized, or instead we can safely avoid to do so.
The next two sections describe how this can be accomplished.

4.2 Concrete Graphs

Each parameter of a remote method invocation can be associated with one or
more descriptors, called concrete graphs. Intuitively, a concrete graph associated
with a reference parameter p of type T is a directed multi-graph that represents
the type structure of one of the possible instances of p at runtime, according
to the class hierarchy. The nodes of the concrete graph are serializable types
belonging to Sc. Each edge departs from a node representing the type of an
object, ends in the node representing the type of one of the object’s attributes,
and is labeled with the name2 of such attribute.
2 Attribute names must be fully specified, i.e., include the type where they are defined.

Hereafter, we use only the attribute label as it is unambiguous in our example.
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The concrete graphs for a given parameter are computed through an inspec-
tion of the static class hierarchy. Fig. 4 shows the two concrete graphs for a
parameter of MixedPage type shown in Fig. 2. The two concrete graphs differ in
the concrete type of the array attribute pageItems of MixedPage. The graph in
Fig. 4(a) describes the case where an element of the array3 is of type TextItem
(a character array). The other graph, in Fig. 4(b), describes the case where the
element is instead of type GraphicItem (an integer matrix)4.

pageItems

chars

[*]

[*]

MixedPage

TextItem[]

TextItem

char[]

char

(a)

pageItems

colours

[*]

[*]

MixedPage

GraphicItem[]

int[][]

int[]

GraphicItem

[*]

int

(b)

Fig. 4. The concrete graphs of a
MixedPage parameter.

Formally, a concrete graph is a tuple
〈N , E ,A,Sc, type, attr〉. N and E are, respec-
tively, the set of nodes and edges of the graph,
with E ⊆ N × N × A, being A the set of at-
tribute names. Sc is the set of serializable con-
crete types. Functions type and attr represent
the object structure:

type : N → Sc attr : E → A
Function type is such that �n1, n2 | type(n1) =
type(n2) i.e., each serializable type appears in
the concrete graph exactly once. Function attr
yields the name associated with an edge. For
instance, if n1 and n2 are the first two nodes of
the concrete graph in Fig. 4(a), and e the first
edge, then type(n1) = MixedPage and attr(e) =
pageItems.

Intuitively, concrete graphs are used as fol-
lows. First, we assume that, for all remote invocations, each serializable param-
eter has its associated set of concrete graphs. Static analysis is then performed
by examining each concrete graph and determining, for each field, if it is used on
the receiving side and hence should be serialized5. This information is recorded
by properly annotating the edges of the concrete graph, and can be exploited
at run-time, when the actual dynamic type of each node is known, to determine
whether to serialize or skip a given attribute.

4.3 The Analysis in Detail
In this section we provide a detailed description of the core of our technique,
i.e., phase 5 of the program analysis described in Section 4.1. To simplify the
presentation, we focus on method invocations with a single input parameter and
no return parameters. Method signatures with arbitrary arity and types, and
encompassing serializable return parameters, can be treated straightforwardly6.
3 An edge labelled [*] denotes indexing in the array.
4 Clearly, the array attribute pageItems can in general contain any combination of

the two.
5 Clearly, in the case of recursive types only an approximation is possible.
6 A simple way to deal with multiple parameters is to represent them as attributes

of a fake, single parameter. As for the return value, it is sufficient to analyze the
client code (instead of the server) using the return value as the parameter driving
the analysis.
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Fig. 5. The control flow graph of the methods DotMatrixPrinter.print,
MixedPage.getTextItems, and TextItem.print.

Exploiting the Concrete Graph. The analysis of a method m(p) starts by building
the concrete graphs associated to p. Then, it analyzes the control flow of m. As
the analysis walks through the body of m, it “decorates” each concrete graph of
p by keeping track of whether a given attribute can be serialized or not, based on
how the control flow has used the attribute thus far. This information is derived
incrementally as the control flow is examined, and relies on the definition of two
labelling functions mapping each edge of a concrete graph to a boolean value:

defined : E → {true, false} skip : E → {true, false}
The value returned by defined(e) is true if the attribute associated with the edge
e (i.e., attr(e)) has been already assigned a value at a given point in the analysis.
The value of skip(e) is true if the attribute attr(e) can be safely skipped during
the serialization process of the parameter p associated to the concrete graph.

Analyzing the Control Flow. To inspect the control flow of the invoked method,
we follow the standard data-flow framework described in [11], which relies on
a control flow graph, where nodes represent program statements and edges rep-
resent the transfer of control from one statement to another. As an example,
Fig. 5 shows the control flow graph for the methods print in DotMatrixPrinter,
getTextItems in MixedPage and print in TextItem (both invoked by print
in DotMatrixPrinter). The control flow graph of each method starts with an
entry node and ends with an exit node. Hence, the overall program control flow
can be built out of the method control flow graphs by moving from one control
flow graph to the other according to method invocation and termination7.

Program analysis is carried out by relying on two groups of equations. The
first group focuses on a given node in the control flow graph, and defines the
relation between the information entering and exiting the node. This group of
equations is sufficient to analyze a single path in the given program. However, a
node in the control flow graph may have multiple incoming edges that represent
7 Exception-handling introduces additional implicit control transfers. However, these

can be analyzed by using existing techniques (e.g., [13]) in conjunction with ours.
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different control flow paths, e.g., due to branches or loops, as shown in Fig. 5.
The second group of equations specifies precisely how the information coming
from these different sources is merged at the entry point of a given target node n,
by defining the relationship between the outgoing information associated to the
sources of all the edges insisting on n, and the information effectively entering
n. Given these two groups of data-flow equations, the global solution can be
computed with a standard worklist algorithm (see, e.g., Chapter 6 of [11]).

Object Aliasing. Our analysis is complicated further by object aliasing, i.e., the
ability of Java to refer to the same object through different references. To de-
termine if an object must be serialized, we must keep track of all the uses of its
aliases. The aliasing problem is widely studied and can be tackled by a number of
techniques (e.g., [9,14]). Moreover, alias analysis is orthogonal to the type-based
analysis described here, and the two can be combined as follows. Given a con-
crete graph, we first exploit the results of alias analysis to annotate each node of
the control flow graph with the alias set associated with each attribute found in
the concrete graph. Then, when we “decorate” the edges of the concrete graph,
we change the state of an edge not only when an attribute is being modified by
a node of the control flow graph, but also when any of its aliases is.

In the sequel, we first describe how the analysis is performed on a single
path, by defining how each instruction in the control flow graph of m affects the
labeling functions defined and skip. Then, we explain how these functions are
“merged” when paths on the control flow graph meet.

Analyzing a Single Path. To simplify the presentation, we assume that the
input parameter p in the method invocations o.m(p) has a single concrete graph
and is serializable, i.e., p ∈ Sc. Moreover, we assume that all multiple-level
reference expression such as a.b().c() and a.b.c are normalized into a sequence
of two-level reference expression of the form a.b() and a.b, by using additional
variables. For instance, y=a.b().c() can be split in x=a.b(); y=x.c(). In the
initial state, skip(e) = true and defined(e) = false, ∀e ∈ E , where E is set of
edges belonging to the concrete graph of p. That is, all the attributes of p are
undefined and their serialization can be skipped.

We focus the discussion on a variable y being analyzed in the context of the
execution of the given method m, where y is either represented in the concrete
graph by some edge e such that y = attr(e) with e = (ni, nj , v) and v = y, or it
is an alias of the variable v represented by e.

Let us specify how the traversal of a given node of the control flow graph
involving y affects the concrete graph, and in particular the labelling of its edges.
Variable y can be affected by definitions and uses (in the common meaning of
program analysis [15, 6]). Definitions of y are statements which assign a new
value to y. Uses of y are all those situations where y’s value (or one of y’s
attribute values) is used in an expression.

The data-flow equations can then be expressed informally as follows:
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– Definition. If defined(e) is true before entering the node of the control flow
graph containing the definition of y, nothing needs to be done, since y was
already defined and the state of the concrete graph up to date. Otherwise,
the value of defined is set to true for e.

– Use. If defined(e) is true before entering the node of the control flow graph
containing the definition of y, nothing needs to be done. Otherwise, the value
of skip(e) must be set to false, since the value of y is needed in the execution
of the method under analysis.

Attribute accesses and method invocations are an important kind of use. An
attribute access to y is in the form8 y.x, where x is an attribute defined in the
class of y. It requires to consider, from this point in the analysis on, not only the
definitions and uses of y but also those of x, to determine whether it is in turn
serializable. Method invocations involving y can be either9 of the form y.g(...)
or g(y,...). Method invocations can be treated as uses, but they require also
method g to be analyzed, by operating on the same concrete graph that was
labelled up to the invocation point.

Example. Let us consider the example of Section 3 and the remote invocation
of print on an object of type DotMatrixPrinter, with a parameter of type
MixedPage. The concrete graphs for this case are shown in Fig. 4, and the control
flow graphs are shown in Fig. 5. Let us consider the concrete graph of Fig. 4(a)
and walk through all paths of the control flow graph. Fig. 6 shows the result of
this analysis as a series of snapshots of the concrete graph as the control flow
graph is analyzed. A dashed edge e means that the corresponding attribute can
be safely skipped, i.e., skip(e) = true, while a solid edge means that the attribute
must be serialized.

pageItems

chars

[*]

[*]

MixedPage

TextItem[]

TextItem

char[]

char

(a) node 1

pageItems

chars

[*]

[*]

MixedPage

TextItem[]

TextItem

char[]

char

(b) node 5

pageItems

chars

[*]

[*]

MixedPage

TextItem[]

TextItem

char[]

char

(c) node 12

pageItems

chars

[*]

[*]

MixedPage

TextItem[]

TextItem

char[]

char

(d) node 14

pageItems

chars

[*]

[*]

MixedPage

TextItem[]

TextItem

char[]

char

(e) node 15

Fig. 6. Decorating the concrete graph of Fig. 4(a) while walking through the control
flow graphs in Fig. 5. The value of skip is true for dashed edges and false for solid ones.

8 As mentioned earlier, if y is an array then y[i] is treated as a reference to an attribute.
9 The new instructions can be viewed as a special case of method invocation.
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The analysis of the control flow graph begins in node 1 of Fig. 5. Upon enter-
ing the first statement of print in node 2, the formal parameter page (and hence
the actual parameter) is used during the invocation of method getTextItems.
Invocation of this method is analyzed by moving to the entry point of its con-
trol flow graph (node 3), but keeping the same concrete graph. The traversal
of node 4 leaves the concrete graph unaffected. On the other hand, node 5 con-
tains a use of the attribute pageItems, through access to its attribute length.
The edge corresponding to pageItems is then marked as to be serialized, shown
with a solid arrow in Fig. 6(b). Node 6 must be considered next. This node is
an interesting case since it illustrates how the construct instanceof must be
handled. Although pageItems[i] is an argument of this instruction, this is not
a use of the variable. The result of instanceof does not depend on the value of
pageItems[i], but only on its type. Moreover, the value of this variable is left
unaffected by the execution of instanceof. Hence, the traversal of this node
leaves the concrete graph unchanged. Note also that in this case we are forced
to go through node 7 instead of choosing the else branch and return to node
5. In fact, choosing the latter path would yield to a violation of the previous
assumption about the type of the elements of pageItems.

The remaining two nodes of getTextItems do not affect the concrete graph
directly, but establish the object aliases that enable further changes effected by
the other methods. Node 7 establishes an alias between an element of pageItems
and an element of the local array text. Node 8 propagates this alias back to
the caller print, by returning text as a result value. Node 9 brings the control
back to print, which resumes from node 10. Nodes 10 and 11 do not affect the
concrete graph, since they contain only uses of text. Node 12 contains a use of
an element of text, which is potentially aliased to one of pageItems. Hence,
the corresponding edge in the concrete graph must be marked accordingly, as in
Fig. 6(c). Such use is a method invocation, which causes the analysis to move to
the control flow graph of print (node 13).

The first statement of this method (node 14) contains a use of the array chars
which, by virtue of aliasing, is an attribute of the element of pageItem aliased
to the invocation target text[i]. Hence, chars must be serialized (Fig. 6(d)).
Finally, node 15 contains an invocation of the method responsible for printing
an element chars[i]. Although here we do not show the code of this method,
intuitively it relies on the input parameter, which then needs to be serialized,
leading to the last and final concrete graph in Fig. 6(e).

According to this analysis, the whole object graph of the parameter must
be serialized. In our example this matches intuition, since all the information
associated to a text page is actually used by a dot-matrix printer.

Let us examine now what happens if the concrete graph of Fig. 4(b) is consid-
ered instead, when walking through the same control flow graphs in Fig. 5. Up to
node 6, the analysis proceeds as in the previous case, by requiring the attribute
pageItems to be serialized. The test in node 6, however, forces us to choose a
different path, and return to node 5. In fact, proceeding to node 7 would violate
the assumption that the elements of pageItems are of type GraphicItem. The
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rest of the analysis proceeds through nodes 5, and 8 to 17. However, since no alias
has been established between text and some attribute of the concrete graph,
the latter remains unchanged: only the edge between nodes MixedPage and
GraphicItem[] in Fig. 4(b) become solid. Hence, the analysis confirms our intu-
ition that serialization of an element of pageItems whose type is GraphicItem
can be safely skipped.

Merging Information from Multiple Paths. What we described thus far is
sufficient to analyze methods whose code does not contain branches in the con-
trol flow. Otherwise, we need to specify how the information collected through
separate control paths is merged when the control paths are rejoined. Such in-
formation is the labelling of edges of the concrete graph, i.e., the value returned
by the functions defined and skip. The problem is that an attribute y in the con-
crete graph may have been recorded as defined (defined(e) = true, y = attr(e))
through one control path, and not in another. Even worse, the same attribute
may have been deemed necessary to the enclosing method, and hence marked as
to be serialized along one path, and marked as to be skipped along another.

Clearly, to preserve a correct program behavior we need to take the most
conservative stand. In the aforementioned case we need to preserve, in the node
where the control flow rejoins, the values defined(e) = false and skip(e) = false. In
other words, an attribute is defined in the joining node if it was defined through
all of the joining paths, and similarly it can be safely skipped during serialization
if it can be skipped through all the joining paths. Formally, if definedi and skipi

are those computed along an incoming path i, ∀e ∈ E :

defined(e) =
n∧

i=1

definedi(e) skip(e) =
n∧

i=1

skipi(e)

Once data-flow equations are given, the analysis is completely defined and
the least solution can be computed by the worklist algorithm. The analysis must
be performed for each method that can be invoked remotely, for each serializable
object parameter, and for each of the possible concrete graphs of such parameter.

5 Prototype

We developed a toolkit to support the approach described in this paper. The
overall architecture is showed in Fig. 7. The core component is the analyzer,
which receives a Java source code as input and outputs information about each
remote method invocation, with the corresponding annotated concrete graphs.
The output is in binary format for the sake of compactness. The current im-
plementation of the analyzer is built on top of JABA [5], an API supporting
program analysis of Java bytecode.

The result of the analysis can be input to one of three tools: The serialization
checker, which detects all unused fields declared as serialized, as mentioned in
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viewerchecker

analyzer

optimizer

source
code

binary
representation

stdoutwarnings instrumented 
code

Fig. 7. Tool architecture.

Section 3. The viewer, which enables visualiza-
tion of the analysis output in a human read-
able format. The optimizer, which exploits the
analysis results to instrument the source code,
by properly redefining serialization. The instru-
mentation process is non-invasive: it preserves
user-defined serialization (when present), and
does not affect other uses of serialization (e.g.,
for storing an object in a file). Details are avail-
able in the full technical report [4].

6 Discussion

In this section we discuss improvements and limitations of our technique.

Semi-static Analysis. Program analysis is usually performed statically, and in-
deed this is the way our approach works, too. The reason is that the computa-
tional load is often too high to be placed on the run-time system. Nevertheless,
our main goal is to reduce bandwidth utilization. Hence, in some cases (e.g., in
mobile environments with low-bandwidth links) it is reasonable to trade compu-
tation for bandwidth, and perform some if not all of our analysis at run-time.

The advantage of this approach lies in the accuracy of information about the
program that becomes available at run-time. For instance, if the analysis were to
be performed right upon a remote method invocation there would be no need to
consider all the possible combinations of concrete graphs for a given parameter
and control flow graphs of the possible servers. Considering the single concrete
graph matching the parameter being passed and the specific server target of the
invocation would be sufficient. Hence, while on one hand there is a computational
overhead to be paid at run-time, this overhead would arguably be significantly
smaller than the one to be paid by an entirely static analysis.

Closed vs. Open World. We implicitly assumed that the whole code base of the
distributed application is available for analysis, and it is not going to change
after the code is deployed. This “closed world” scenario holds for a number of
distributed applications. RMI, however, was designed to support an “open world”
scenario where the application code base can change dynamically and seamlessly,
by virtue of encapsulation and mobile code. In this case, our analysis would no
longer be applicable as is. Let us assume that, in our example, IPrinter exports
an additional method getPage returning the page currently being printed. This
method can be invoked by a client C2, different from the client C1 that required
the page printout. No assumption can be made in general about how C2 uses
the page. For instance C2 might require the serialization of the entire page as
originally stated by the programmer. Now the question is whether the code of
C2 is available at the time of the analysis. If so, the need to serialize all the
fields of a page is discovered when the analysis is run on the remote method
invocation of getPage issued by C2. Instead, if the code of the clients that may
invoke getPage is not available, our approach does not work.
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We are currently extending our analysis to encompass an open world scenario.
This can be achieved by exploiting escape analysis [3], to determine if a given
object cannot escape the code base known at analysis time. In case it is, the
result of our analysis is still valid as is, since an object that has been only partly
serialized is never passed outside the boundaries of the analyzed code. Instead,
if an object escapes such boundaries no assumption can be made about its use.

7 Related Work

The existing approaches to RMI optimization focus on optimizing the compu-
tational overhead of serialization, rather than its bandwidth consumption. Most
of these approaches are intended for scientific applications exploiting parallel
computing, where computational efficiency is the main concern. To the best of
our knowledge no published research has tackled the problem of using program
analysis to reduce the traffic overhead of serialization. Thus, no other approach
is directly comparable to ours.

Krishanswamy et al. [8] reduce the computational overhead on the client side
by exploiting object caching. For each call, a copy of the byte array storing the
serialized object is cached to be possibly reused in later calls. Braux [1] exploits
static analysis to reduce the computational overhead of an invocation due to the
reflective calls needed to discover the dynamic type information. The work of
Kono and Masuda [7] relies on the existence of run-time knowledge about the
receiver’s platform, and redefines the serialization routine accordingly. On the
sender side, the object to be serialized is converted directly into the receiver’s
in-memory representation, so that the receiver can access it immediately with-
out any data copy and conversion. Breg and Polychronopoulos [2] explicitly
target homogeneous cluster architectures, and provide a native implementation
of a subset of the serialization protocol. Their approach leverages on knowledge
about the data layout in the cluster, so that complex data structures are encoded
directly in the byte stream by using only a minimal amount of control informa-
tion. Philippsen et al. [12] integrate various approaches to obtain a slightly more
efficient RMI implementation. They simplify the type information encoded in
the serialization stream, improve the buffering strategies for dealing with the
stream, and introduce a special handling of float and double. Nevertheless,
their optimizations are again closely tied to the parallel computing domain.

8 Conclusions

We presented a novel program analysis technique that aims at optimizing pa-
rameter serialization in remote method invocations on a per-invocation basis.
The analysis identifies which portion of a parameter is actually used on the
receiving side. This information can be exploited to redefine the serialization
mechanism and reduce the run-time communication overhead. We implemented
a toolkit supporting our approach, and we are currently using it for an empirical
evaluation of our method against real-world RMI applications.
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Abstract. Real-Time Maude is a language and tool supporting the
formal specification and analysis of real-time and hybrid systems. The
specification formalism is based on rewriting logic, emphasizes generality
and ease of specification, and is particularly suitable to specify object-
oriented real-time systems. The tool offers a wide range of analysis tech-
niques, including timed rewriting for simulation purposes, search, and
time-bounded linear temporal logic model checking. It has been used to
model and analyze sophisticated communication protocols and schedul-
ing algorithms. Real-Time Maude is an extension of Maude and a major
redesign of an earlier prototype.

Tools based on timed and linear hybrid automata, such as Uppaal [1],
HyTech [2], and Kronos [3], have been successful in modeling and analyzing an
impressive collection of real-time systems. While their restrictive specification
formalism ensures that interesting properties are decidable, such finite-control
automata do not support well the specification of larger systems with different
communication models and advanced object-oriented features.

The Real-Time Maude language and tool emphasizes ease and generality of
specification, including support for distributed real-time object-based systems.
The price to pay for increased expressiveness is that many system properties may
no longer be decidable. However, this does not diminish either the need for ana-
lyzing such systems, or the possibility of using decision procedures when applica-
ble. Real-Time Maude can be seen as complementing not only automaton-based
tools, but also traditional testbeds and simulation tools by providing a wide
range of formal analysis techniques and a more abstract specification formalism
in which different forms of communication can be easily modeled.

Real-Time Maude specifications are executable formal specifications. Our tool
offers various simulation, search, and model checking techniques which can un-
cover subtle mistakes in a specification. Timed rewriting can simulate one of
the many possible concurrent behaviors of the system. Timed search and time-
bounded linear temporal logic model checking can analyze all behaviors – relative
to a given treatment of dense time as explained below – from a given initial state
up to a certain duration. By restricting search and model checking to behaviors
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up to a certain duration, the set of reachable states is restricted to a finite set,
which can be subjected to model checking. For further analysis, the user can
write his/her own specific analysis and verification strategies using Real-Time
Maude’s reflective capabilities.

The time domain may be discrete or dense. Timed automata “discretize”
dense time by defining “clock regions” so that all states in the same clock region
are bisimilar and satisfy the same properties [4]. The clock region construction
is possible due to the restrictions in the timed automaton formalism but in gen-
eral cannot be employed in the more complex systems expressible in Real-Time
Maude. Real-Time Maude deals with dense time by offering a choice of different
“time sampling” techniques, so that instead of covering the whole time domain,
only some moments in time are visited. For example, one strategy offers the
choice of visiting at user-specified time intervals; another strategy allows time
to advance “as much as possible” before something “interesting” happens. Real-
Time Maude’s search and model checking capabilities analyze all behaviors up
to the given strategy for advancing time. Search and model checking are “in-
complete” for dense time, since there is no guarantee that the sampling strategy
covers all interesting behaviors. However, all the large systems we have modeled
in Real-Time Maude so far have had a discrete time domain, and in this case
search and model checking completely cover all behaviors from the initial state.

Real-Time Maude has been used in some large case studies, including the
specification and analysis of a new and sophisticated suite of protocols for reli-
able and adaptive multicast in active networks, where formal analysis uncovered
subtle design errors which could not be found by traditional testing, while in-
dependently finding all bugs discovered by testing [5]. Other tool applications
include: analyzing a series of new scheduling algorithms for real-time systems
and a reliable multicast protocol being developed by the Internet Engineering
Task Force, and developing an execution environment for a real-time extension
of the Actor model [6].

Real-Time Maude is implemented in Maude [7] as an extension of Full Maude.
The current version is a complete redesign of a prototype developed in 2000 [8]
and emphasizes new analysis techniques, user-friendliness, and performance.
Since most symbolic simulation, search, and model checking commands are im-
plemented by translating them into corresponding Maude commands [9], Real-
Time Maude’s performance is in essence that of Maude; in particular, the model
checking performance is comparable to that of SPIN [10].

The tool – together with a user manual, related papers, and executable exam-
ple specifications – is available free of charge at http://maude.cs.uiuc.edu/.

Specification and Analysis in Real-Time Maude

Real-Time Maude extends the rewriting logic language Maude [7] to specify real-
time rewrite theories [11]. A Maude module specifies a rewrite theory (Σ, E, R)
where (Σ, E) is an equational theory specifying the system’s state structure and
R is a collection of conditional rewrite rules specifying the concurrent transitions
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of the system. A Real-Time Maude specification is a Maude specification together
with a specification of a sort Time for the time domain, and a set of tick rules
which model the time elapse in the system and have the form

{t} => {t′} in time u if cond

where u is a term, possibly containing variables, of sort Time denoting the du-
ration of the rule, and the terms t and t′ are terms of a designated sort System
denoting the system state. Rewrite rules that are not tick rules are instantaneous
rules assumed to take zero time. The initial state should always have the form
{t′′}, for t′′ a term of sort System, so that the form of the tick rules ensures that
time elapses uniformly in all parts of the system.

The following very simple example models a “clock” which may be run-
ning (in which case the system is in state {clock(r)} for r the time shown
by the clock) or which may have stopped (in which case the system is in state
{stopped-clock(r)} for r the clock value when it stopped). When the clock
shows 24 it must be reset to 0 immediately:
(tmod DENSE-CLOCK is protecting POSRAT-TIME-DOMAIN .
ops clock stopped-clock : Time -> System [ctor] .
vars R R’ : Time .
crl [tickWhenRunning] :

{clock(R)} => {clock(R + R’)} in time R’ if R’ <= 24 - R [nonexec] .
rl [tickWhenStopped] :

{stopped-clock(R)} => {stopped-clock(R)} in time R’ [nonexec] .
rl [reset] : clock(24) => clock(0) .
rl [batteryDies] : clock(R) => stopped-clock(R) .

endtm)

The built-in module POSRAT-TIME-DOMAIN defines the time domain to be the
nonnegative rational numbers. The two tick rules model the effect of time elapse
on a system by increasing the clock value of a running clock according to the
time elapsed, and by leaving a stopped clock unchanged. Time may elapse by any
amount of time less than 24 - r from a state {clock(r)}, and by any amount of
time from a state {stopped-clock(r)}. There is no requirement that the spec-
ification be “non-Zeno.” To execute the specification we should first specify a
time sampling regime, for example by giving the command (set tick def 1 .)
which says that time should advance by increments of 1 in each application of
a tick rule. The command (trew {clock(0)} in time <= 100 .) then sim-
ulates one behavior of the system up to a total duration 100. The command
(tsearch [1] {clock(0)} =>* {clock(25)} in time <= 100 .) checks whe-
ther the state {clock(25)} can be reached from the state {clock(0)} in time
less than or equal to 100.

Time-bounded search and model checking are crucial for analyzing systems
where the set of reachable states – relative to the chosen strategy for advancing
time – is infinite, since the set of states reachable within the time bound should
be finite. Such a time bound is not needed when the reachable state space, again
relative to the chosen “time sampling” strategy, is finite, as in our example. For
these cases, Real-Time Maude offers untime(bounde)d search and model checking
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commands, which apply the selected strategy for advancing time but where the
search/model checking is not bounded by a time value.

Real-Time Maude’s model checker extends Maude’s high-performance linear
temporal logic explicit-state model checker [10]. Temporal formulas are formed
by user-defined atomic propositions and operators such as /\ (conjunction),
\/ (disjunction), ˜ (negation), [] (“always”), <> (“eventually”), U (“until”), etc.
Atomic propositions, possibly parameterized, are terms of sort Prop and their se-
mantics is defined by stating for which states a property holds. Propositions may
be clocked in that they also take the elapsed time into account. A module defining
the propositions should import the built-in module TIMED-MODEL-CHECKER and
the module to be analyzed. The following module defines the unclocked proposi-
tions clock-dead (which holds for all stopped clocks) and clock-is(r) (which
holds if a running clock shows r), and the clocked proposition clockEqualsTime
(which holds if the running clock shows the time elapsed in the system):

(tmod MODEL-CHECK-DENSE-CLOCK is including TIMED-MODEL-CHECKER .
protecting DENSE-CLOCK .
ops clock-dead clockEqualsTime : -> Prop [ctor] .
op clock-is : Time -> Prop [ctor] .
vars R R’ : Time .
eq {stopped-clock(R)} |= clock-dead = true .
eq {clock(R)} |= clock-is(R’) = (R == R’) .
eq {clock(R)} in time R’ |= clockEqualsTime = (R == R’) .

endtm)

The model checking command (mc {clock(0)} |=u [] ˜ clock-is(25).)
checks whether the clock is different from 25 in each computation (relative
to the chosen time sampling strategy). The timed model checking command
(mc {clock(0)} |=t clockEqualsTime U (clock-is(24) \/ clock-dead)
in time <= 1000 .) checks whether the clock always shows the correct time,
when started from {clock(0)}, until it shows 24 or is stopped.

While Real-Time Maude model checking is not complete in general, it is a
decision procedure for time-bounded temporal properties when the time domain
is discrete (which would be case if the imported module POSRAT-TIME-DOMAIN
were replaced by NAT-TIME-DOMAIN) and the instantaneous rules terminate.
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Abstract. Component-based software engineering (CBSE) is being accepted as 
an effective paradigm for building software systems with reusable components. 
Product line software engineering (PLSE) is an approach that utilizes CBSE 
principles to support the economic development of several applications in a 
domain. Hence, the components should conform to relevant domain standards 
and they must at least provide common functionality of the domain. Moreover, 
micro-level variability within commonality should also be modeled in compo-
nents so that a product member-specific business logic or requirement can be 
supported through component tailoring or customization. Therefore, the degree 
of commonality and customizability determines the range of component appli-
cability. In this paper, we propose a systematic approach to identify and model 
commonality and variability (C&V) and present a methodology to reason about 
the identified C&V model. With the proposed process and guidelines, compo-
nents in a product line can better support a larger set of family applications. 

1   Introduction 

Component-based software engineering (CBSE) has been widely accepted as a new 
effective paradigm for building software systems with reusable components, conse-
quently reducing efforts and shortening time-to-market. During the last decade, the 
industry practices of CBSE largely have been producing and utilizing in-house com-
ponents in order to increase modularity and maintainability beyond object-oriented 
paradigm. A few case studies of CBSE have been focusing on producing domain 
common components. 

Product line software engineering (PLSE) shares a great deal of CBSE conceptual 
elements and constructs, but its goal is to economically produce a family of applica-
tions by utilizing domain common components. Hence, it is an essential success fac-
tor in CBSE to model the common functionalities and features of a domain in order to 
produce such domain common components. Furthermore, the micro-level variability 
or alternatives within the commonality should also be modeled in such components so 
that a product member-specific business logic or requirement can be supported 
through component tailoring or customization [1]. Therefore, it is fair to state that the 
degree of commonality and customizability determines the applicability of compo-
nents in PLSE [2]. 

                                                           
* This work is supported by the research funding program of Soongsil University. 
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In this paper, we present a systematic methodology to identify and model the 
C&V. And, we show how the modeled C&V can be mapped to components and 
frameworks. In the appendix, we present a case study of building a banking system to 
show how the proposed methodology can be effectively and practically applied. 

2   Related Works 

The concept of Object-Oriented Application framework was introduced in order to 
increase reusability in [3]. Schmidt suggests “plug-in” which one of the different 
alternatives is plugged into a hot spot in a Framework [4]. Moreover, he proposes a 
hot spot subsystem as an implemented hot spot. In this study, abstract domain vari-
ability is embodied in a hook operation designed with polymorphism and inheritance. 
However, a larger reuse unit than objects such as component is not considered in this 
work. 

COMO method by Lee [5] suggests a technique to extract common functionality 
into components by using a clustering algorithm. This method suggests identifying 
variation points and variants from a family requirement specification. FAST is an 
early product-line methodology which produces a process pattern for software pro-
duction [6]. This pattern consists of three main processes; Qualify Domain, Engineer 
Domain, and Engineer Application. Especially the facility through domain engineer-
ing such as application engineering environment and application engineering process 
can be reused to produce family members rapidly. 

Griss [7] suggests using feature model to derive the commonality and variability, 
where features are clustered into components. This work proposes a four-step process 
to use features to develop product lines. In addition, the issue of resolving crosscut-
ting features is addressed. However, the process can be better augmented with spe-
cific work instructions, artifact templates and traceability framework. Kobra method 
by Atkinson [2] uses enterprise model, structural model, activity model, interaction 
model and decision model to model and to specify the variability for framework engi-
neering. A stereotype «variants» is used in these models to indicate the existence of a 
variation point. A decision model is used to express the variation points for business 
processes and various diagrams. However, in this work, it is largely unspecified what 
criteria can be used to determine the existence of variability and how to identify vari-
ants and their scopes. 

3   The Overall Process 

The whole process to model C&V and design component framework consists of five 
phases and each phase has 2-3 activities as in figure 1. The process has a sequential 
task flow, but it can be applied iteratively. The details of each phase are specified in 
sections 3 through 7. 

The first phase, Requirement Normalization, is to acquire a set of requirements 
from product members, to identify common vocabulary, and to re-write the require-
ments using the common vocabulary. This phase is essential to pursue subsequent 
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phases since heterogeneity of different requirements is normalized so that require-
ments can be compared and C&V can be effectively applied. 

The second phase, Commonality Identification, is to compare the set of normalized 
requirements and to identify the common features, i.e. functionality or quality attrib-
utes. Once a commonality set is identified, then a Family Requirement Specification is 
constructed from which components are modeled. Variability is a minor difference 
among family members in their logic or workflow, and it is realized into components 
so that component consumers can tailor acquired components for their own applica-
tions. The third phase, Variability Identification, is to identify variability and to design 
variation points. 

Phase 1. Requirement NormalizationPhase 1. Requirement Normalization

Gathering
Requirement Specification

Activity 1A

Creating 
a Glossary of standard Terms

Activity 1B

Rewriting
Requirement Specification

Activity 1C

Phase 3. Variability ModelingPhase 3. Variability Modeling

Identifying 
Variation Point and Variants

Activity 3A

Designing
Variants

Activity 3B

Phase 5. Framework ModelingPhase 5. Framework Modeling

Scoping 
Framework

Activity 5A

Realizing 
Variability

Activity 5B

Phase 4. Component ModelingPhase 4. Component Modeling

Clustering
Features into Components

Activity 4A

Activity 4BPhase 2. Commonality IdentificationPhase 2. Commonality Identification

Creating 
Feature Comparison Table

Activity 2A

Writing a Family
Requirement Specification

Refining
Component Model

Activity 2B

 

Fig. 1. The Overall Process. 

The fourth phase, Component Modeling, is to cluster features into components and 
to design preliminary components. Also, variation points are injected into these com-
ponents and required interfaces are defined. A framework is a large-grained reuse unit 
which embodies a skeleton architecture, a set of related components and their rela-
tionships. An application is created by instantiating this framework. The last phase, 
Framework Modeling, is to identify related components and their relationships, which 
constitute a framework. 

4   Requirement Normalization 

This phase consists of three activities; Gathering Requirement, Creating a Glossary of 
Terms, and Rewriting Requirements. 
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Fig. 2. Requirement Normalization Process and Artifacts. 

4.1   Gathering Requirement Specifications 

The main goal of product line engineering is to develop reusable assets from which 
family members’ applications can be instantiated in a cost-effective way. Hence, the 
domain analysis should be applied to a large set of product members, so that the de-
veloped components or framework can be widely reused. Activity 1A is to collect a 
set of requirements from product members, and these are represented as SRSi in figure 
2. Each requirement may come from a project member, or it can be constructed with a 
consideration of standard domain logic and knowledge. 

4.2   Creating a Glossary of Standard Terms 

One of the first obstacles in PLE is the heterogeneity of the requirement specifications 
gathered from several product members. The heterogeneity is largely appeared as 
inconsistency and ambiguity on terminology and concepts used in the requirements. A 
single term may have different meanings among product members, and several differ-
ent terms among product members may have a single meaning. 

Since the components used in PLSE should provide the standard or common fea-
tures among product members, component producers must compare the set of re-
quirements and identify a commonality set. But, this heterogeneity makes the com-
parison of various requirements impractical and inefficient. Hence, the set of require-
ments must be normalized using standard terms and concepts. 

Activity 1B is to derive a glossary of standard terms from the set of requirements 
gathered during activity 1A. In order to facilitate the process of identifying standard 
terms, we use a term comparison table as in table 1. We first grouping similar terms, 
T(1,1), T(2,1), … T(n,2) from the requirements and identify the most commonly used 
or standard term. 

Table 1.  Term Comparison Table. 

Member 
Category 

M1 M2 ��� Mn 
Common  

Term 

 T(1,1) T(2,1) ��� T(n,2)  

 T(1,2) T(2,3) ��� T(n,4)  
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Once a term comparison table is constructed, we create a glossary of standard 
terms which is referred by all further activities and it provides a common definition of 
terms used. 

4.3   Rewriting Requirement Specifications 

By using the glossary of standard terms, we re-write the requirement specifications of 
product members. This will make it easier to compare the features among product 
members and to identify the commonality and variability since the revised require-
ment specifications will be expressed in all standard terms. However, if the require-
ment specifications from the product members are relatively homogeneous and there 
exists only minor difference in the terms used, then this activity can be omitted. In 
figure 2, a Norm SRSi is a re-written requirement specification, called normalized 
requirement specification. 

5   Commonality Identification 

During the first phase, requirement normalization, we normalized a set of heterogene-
ous requirements and domain knowledge. The second phase, commonality identifica-
tion, will compare several requirements of product members to derive a set of com-
mon features among them. This common set will be used as the basis to determine the 
scope of candidate components and frameworks. 

5.1   Creating a Feature Comparison Table 

In order to effectively compare the set of requirements, we use a Feature Comparison 
Table as in table 2. For the ‘n’ members of the PL, their features are compared for 
potential commonness in this table. 

Table 2. Feature Comparison Table. 

Product Members 
Degree of Com-

monality 
Rules 

Applied 
Decision 

(Y/N) Feat- 
ures 

M1 M2 … Mn    

F1 � �  �    

F2  �  �    

… � � �     

Fm �  � �    

A feature, as in PLE [7], is characterized by functionality and quality attributes. In 
many cases a feature maps to functionality. A PL has a set of features; F1, F2, .., Fn 
where Fi is a specific feature in PL. The first column lists all the features, F1, F2, ..., 
Fm, found in a product line. Earlier this set was defined as a union of the requirements. 
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A difficulty in creating this set in practice is to apply a consistent degree of granular-
ity to all the features. This is because the granularity of features in a member’s re-
quirement may be different from that of other member’s requirement. Hence, one 
should come up with an appropriate granularity level when there is a dispute on dif-
ferent granularity levels on a single feature. This granularity normalization can often 
be done with the intensive participation of domain experts. 

Some of the features will be common among members while others are non-
common, i.e. specific only to one or a few members. In the columns for product 
members, we express how each feature, Fi, is applied to each member, Mj. If Fi is 
applied to Mj, i.e. the member Mj requires Fi, a check mark is given. In deciding the 
applicability of features, we only consider the overall functionality and quality attrib-
utes at macro level. 

In the column of ‘Degree of Commonality’, we specify a metric for each feature as 
(Number of check marks) / (Total Number of Members). This metric gives only an 
approximate degree of commonness for the given feature since one member’s re-
quirement may be more valuable or dominant than other members due to the different 
representation of the member in the domain. 

In the column of ‘Rules Applied’, we specify the rules that have been applied in 
making decisions on whether or not each feature is included in the commonality set. 
In making decisions, we consider several factors; the degree of commonality, business 
influence of each member, sponsorship such as funding, and the degree of standardi-
zation. Although defining a set of precise rules for this decision making is not feasi-
ble, we propose the following candidate rules as a starting point; 
i) If the degree of commonality is 100%, it is included in the set. 
ii) If the degree of commonality is near 100% and there are some influential member

s who require the feature, then it is included in the set. 
iii) If the degree of commonality for a feature is relatively lower than those of other fe

atures and there is no influential member who requires the feature, then it is not in
cluded in the set. If a member is a key player in the domain in terms of business sc
ale and market share or a client who pays the cost of developing reusable assets, th
en it is included in the set. 

iv) Other case which lies between the cases ii) and iii) should be judged with the dom
ain knowledge, members’ influence and business issues such as marketability. 

v) If the feature is an essential intrinsic or standard functionality in a domain, then it 
can be included in the set with careful judgment. 

The last column of ‘decision’ is about whether the feature should be included in the 
commonality set or not. The decision on whether or not a feature is common is mostly 
made based the above rules, but other business factors or domain constraints can also 
be considered. 

5.2   Writing a Family Requirement Specification 

Based on the comparison, we can now summarize the common features in 
Commonality Specification Table as in table 3. The first column is the identification 
number of each feature, and any reasonable number scheme can be used. The second 
column is for the names of features, and the third column is the description of 
features. 
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Table 3. Commonality Specification Table. 

Feature ID Feature Name Description 

CF1   

CF2   

. . .   

By using the common features in this table, we create a Family Requirement Speci-
fication which will be used in later phases as the reference for building components 
and frameworks. Also, the information in this table can be provided to component 
consumers so that they understand what services the components provide and what to 
expect from the reusable assets. 

6   Variability Modeling 

Through Commonality Identification activity, we have identified a common set of 
features that should be realized in components. However, a careful examination on a 
common feature often reveals a minor variation on logic or workflow. This is called 
variability within a commonality. By realizing this variability in developing compo-
nents, the range of applicability and so reusability of components can be greatly in-
creased [8]. 

6.1   Identifying Variation Point and Variants 

A variation point of a feature in PLE is an identifier of a hot spot where the variability 
among different product members occurs [2]. In order to effectively model the vari-
ability, we use the Variability Identification Table as in table 4. 

Table 4. Variability Identification Table. 

Product Members Common 
Features 

Variation 
type 

M1 M2 M3 … Mn 
Range 

CF1 Logic V1.1 V1.2 V1.1  V1.1 2 

CF2        

CF3 
Work-
flow 

V3.1 Open V3.2  V3.2 2+Open 

. . .        

CFm Logic Open Open   Open Open 

 
In the second column, the type of a variation point is specified. In both CBD and 

PLE, a variation point can be in a form of logic and workflow in practice. The logic in 
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this context consists of several steps which correspond to program statements once 
implemented. Hence, a variation point of logic describes a set of different algorithms 
for a system or business operation. 

A variation point of workflow describes a set of different message flows for a sys-
tem or business operation since a workflow is typically realized by a sequence of 
message invocations possibly over multiple objects or components. An example can 
be in a banking system product line that there can be different workflows, i.e. proce-
dures, to evaluate and approve a loan application. 

In the next set of columns, M1, M2, … , Mn, all possible instances of a logic or 
workflow variation point for CFi, i.e. variants, are identified and specified. A variant, 
Vi,j is jth variant of ith common feature, CFi. In the first row for CF1, the variant of M1 is 
specified as V1,1. If the variant for M2 is not same as V1,1, then M2 is given a new vari-
ant ID. In the row, the M3 is shown to have the same variant as M1’s. By repeating this 
procedure, all the possible variants for each variation points are identified. 

A key problem in completing this table is to decide whether variability exists be-
tween any pair of product members. That is, what exactly is the difference between 
Vi,p and Vi,q? We propose the following decision rules based on the elements of post 
condition, input domain, output range, and realization algorithms; 

i) If the post conditions of CFi for two members are different, then there exists a vari
ation. A post condition is specified on the result of CFi, and if the post conditions f
or two members are different, it implies that the logics or workflows for two mem
bers are different in some degree. 

ii) If input domains or output ranges of CFi for two members are different, then there 
exists a variation. An input domain for a feature is a set of all possible input value
s and/or types, and an output range is the set of all possible values and/or types ge
nerated by the feature. If input domains are different, then the logics or workflows 
to manipulate the input values will be different. Similarly, if output domains are di
fferent, then there must be different algorithms or workflows to produce different s
ets of output values. 

iii) If the realization algorithms for CFi can be determined at this stage, and the algor
ithms for two members are different, then there exists a variation. In some cases, t
he realization algorithms are not available until a later phase. But in some other ca
ses, such algorithms can be available as a pre-fixed requirement. In this case, two 
algorithms can be compared to determine the existence of variability. 

iv) If none of the above rules can be applicable to CFi, then other factors such as pre-
condition, invariants, and semantic description should be considered for a compari
son. 

The last column of Range of Variation specifies the total number of variants identi-
fied by decision rules. If this number is equal to 1, then there is no variability for the 
common feature. If this number is greater than 1, then CFi has a variation point and a 
set of variants. If a variant for a variation point is unknown, i.e. open, then, it is 
marked with ‘open’. If some variants are known and also some variants are open, then 
we put the total number of variants followed by the ‘open’. 
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6.2  Designing Variants 

From Variability Identification Table, we decide and specify how to realize the vari-
ants for each variation point. We use Variability Range Table as in table 5. 

Table 5. Variability Range Table. 

Variable 
Features 

Type of Variation Set of Variants Open/ Closed Default Description 

CF1 Logic {V1.1, V1.2} Closed V1.1  

CF3 Workflow {V3.1, V3.2} Open V3.2  

. . .      

CFm Logic { } Open None  

The first column lists only the common features that contain variation points, and 
so this information can be copied from the Variability Identification Table. The sec-
ond column specifies the type of variation type which is also available in the Variabil-
ity Identification Table. The third column, List of Variants lists all the variants identi-
fied. The next column, Open or Closed, specifies a binary value to indicate whether 
the list of variants identified is complete, i.e. closed, or expandable in the future, i.e. 
open. Depending on this openness, different implementation techniques can be 
adopted. The next column, Default, specifies a default variant among the list of vari-
ants, so that the components can be consumed without tailoring process if the default 
variant is needed during application engineering. 

7   Component Modeling 

7.1   Clustering Features into Components 

During the previous activities, a set of common features and its variability scope have 
been identified. Based on this C&V model, conceptual components are designed. 
There is no mechanical procedure to identify components, but we apply the following 
guidelines to help clustering related features into components as in figure 3. Two 
features CFi and CFj are related if following conditions hold; 
i) Features CFi and CFj are related if they belong to a same functional category as de

fined by clients. This functional category may be based on system, module, functi
onal classification and deployment classification. Typically, clients have in-depth 
domain knowledge and possess a functional classification scheme of features acco
rding to their domain knowledge. And, so if two features belong to a same functio
nal category defined by clients, then these are said to be related. 

ii) Features CFi and CFj are related if they use common data or information. A featur
e is a small-grained functionality required by clients, and each feature uses a set of
 data elements or information. If two features use exactly or mostly same set of dat
a or information, they are grouped into a component. 
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iii) Features CFi and CFj are related if there is some strong degree of dependency bet
ween the features. A dependency in OOP and CBD is a method invocation relation
ship. Two features with dependencies should be clustered into a single component 
in order to minimize the coupling. 

iv) Features CFi and CFj are related if they belong to the system layer and they proces
s related system operations or transactions. Typically a feature that processes syste
m operations belongs to a system layer, and the set of such features should be grou
ped into a single component. Hence, these features can be distinguished from the f
eatures that manipulate persistent data or objects. 

v) Features CFi and CFj are related if they belong to the business layer and they mani
pulate persistent data or objects. In contrast to iv), these features belong to busines
s layer, and so they can be distinguished from the features that process system ope
rations or transactions. 

 
Fig. 3. Grouping Features into Components. 

A feature is a system behavior exposed to clients, and so it tends map to a system 
component. However, a feature can map to a business component if the nature of the 
feature is mostly CRUD data manipulation. Hence, it is common in practice that a 
feature maps to a system component, which in turn invokes operations of a business 
component yielding an inter-component dependency. 

7.2   Refining Component Model 

The above set of decision rules is neither definitive nor complete since this grouping 
process largely depends on the domain knowledge and there can be exceptions to the 
rules. Two problematic cases that could be generated by applying the decision rules 
are unassigned features such as CF3 and features appearing in multiple components 
such as CF2 as shown in figure 3. 

An unassigned feature can be grouped into a component that is the closest to the 
feature. If there are a large number of unassigned features, then they are grouped into 
a utility component. If a feature appears in multiple components, then we use the 
following decision rules; 
i) If the functional nature of the feature is mostly information retrieval rather than inf

ormation update, then the feature is duplicated into multiple components for conve
nience and efficiency. 
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ii) If the functional nature of the feature is mostly information update rather than retri
eval, then assign the feature to one component which uses the feature most intensi
vely. And, let other components access this component with the feature through int
erface. In this way, we reduce data/state inconsistency problem with duplicated fea
tures while providing ways to access the feature. 

iii) If the feature has the characteristics of the case ii), but it is not feasible to find a co
mponent which will contain the feature, then, group such features into a common 
component. And, let other components access this feature through the interface of 
this common component. 

Figure 4 shows that the unassigned feature and figure appearing in two components 
are re-configured according to the decision rules. 

8   Framework Modeling 

8.1   Scoping Framework 

Once the components are identified, then frameworks are designed by grouping re-
lated components. A framework is semi-completed application and hence its granular-
ity is larger than components. Therefore, in most cases, we have a single framework 
for a product line but there can be multiple frameworks in some cases. We use the 
following guidelines in determine whether two components are related; 
i) Two components are related if both components are required to constitute a sub-sy

stem. This is because a framework embodies a skeleton architecture of sub-system
 or a whole system. 

ii) Two components are related if both components map to structural elements of a st
able and skeleton application architecture of the product line. 

iii) Two components are related if there is a dependency or association relationship. In
ter-component relationships should be captured within a framework since a frame
work is highly cohesive large-grained reuse unit. 

 

Fig. 4. Grouping Components into Framework. 
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Figure 4 shows that the three components are grouped into a single framework. 
The system component interacts with clients whereas business components act upon 
the invocation by system components through mediate pattern. 

8.2   Realizing Variability 

Once components are clustered into a framework, then we project the variability in-
formation specified in table 5 into frameworks. Typically variations points are real-
ized inside components, and methods to set variants for variation points are defined in 
a required interface as shown in figure 5. 

Tailoring components is different from invoking component methods in several 
ways. Tailoring components is typically done once per deployment or installation 
whereas invoking component methods are frequently made at run-time. The variant 
set during tailoring process will remain persistently within the component whereas 
actual parameters passed through method invocation are transient, i.e. short lived. 
Hence, a framework or components must maintain the variant set during tailoring 
process as persistent information. This is shown as ‘CurrentVariant’ persistent attrib-
ute in figure 5. 

If a variation point has a Closed scope, then it is tailored by using Select( ) method. 
This method will take variants required by each application and store them persis-
tently. If a variation point has a completely Open scope, then it is tailored by using 
PlugIn( ) method. This method will take a reference to an external function, object or 
component, and invoke the method provided by the plugged in entity. If a variation 
point has a partially Open scope and some variants are known, then we use both Se-
lect( ) method and PlugIn( ) method. 

 

Fig. 5. Variation points projected into Framework. 
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As shown in figure 5, the CF1 has a logic variation point of Closed scope and its 
tailoring method in the required interface is defined as SelectV1();. In the case of CF3, 
the workflow variation point has an Open Scope with two known variants; V3.1 and 
V3.2. Therefore, two tailoring methods are used; SelectV3() and PlugInV3(). If one of 
the two known variants is required for a product member, then the SelectV3( ) method 
is invoked. If the built-in variants, i.e. workflows, cannot be applied to the product 
member, then a plug-in object will be passed through PlugIn( ) method. 

9   Traceability 

The process proposed in this paper includes 11 activities, and each activity produces 
one or two artifacts as summarized in figure 6. We now show the traceable items 
between pairs of artifacts in figure 8. The arrow between a pair of artifacts indicates 
the transformation direction, and the expression Item1� Item2 on arrows indicates 
the Item1 is a source artifact from which a target item2 is derived. And, so the target 
artifact can be traced to the source artifact through the transformation items. For vari-
ants in the artifact Variability Range Table are source items from which variation 
design and required interface in a framework are derived as in the figure. 

Artifact  Artifact  
Item in prior Artifact�Item in Next Artifact

(Number)

1A. 
Requirement 
Specifications

1B.
Term Comparison 

Table 

1B. 
Glossary of 

Standard Terms

1C. 
Re-written 

Requirement 
Specification 

2A. 
Feature 

Comparison Table 

2B.
Family 

Requirement 
Specification 

3A. 
Variability 

Identification 
Table 

3B. 
Variability Range 

Table 

4A. 
Candidate 

Components

4B.
Components

5A. 
Framework with  

Commonality  

5B.
Framework with 

C&V 

Terms�Terms Related Terms�Common Term

Terms�
ommon
Term

Term�Feature Features�Common Feature

Common Term�Common Term

Common Feature whit Variability�Common Feature

(7)

(3)

(4)

(5) (6)

Variants�Set of Variants
range of variation�Open/Closed

(9)

Common Feature�
Clustered Common Feature

(8)

Components�Candidate Components

(11)

(12) (13)

Individual Component�
Component Relationship

Open/Closed�Select/Plug-in Operation
Variants�Variants

(10)

(1)

Component�
Component with variability

(2)

 
Fig. 6. Traceable Items among Artifacts. 
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Each mapping in figure 6 specifies a transformation of a source item onto a target 
item, and a set of rules, called traceability rules, can be defined to show the validity 
of transformation. Due to the paper length, we only show rules for the mapping (10) 
Variability Range Table to Framework with C&V as an example. 
− Rule 1. Each variant with Closed feature is mapped to a customization method 

Select<VP name> (VariantType v) in Required interface. The VariantType must be 
a datatype that specifies a set of all possible variants, so that an argument of Vari-
antType can be passed by component clients. 

− Rule 2. Each variant with Open feature is mapped to a customization method 
PlugIn<VP name> (PlugInObject p) in Required interface. The PlugInObject must 
be a class type that models a set of all variant objects that can be passed. 

− Rule 3. A feature with both known variants and Open range must be mapped to 
two customization methods; a Select<VP name>( ) for known variants and a 
PlugIn<VP name>( ) for Open variants. 
Similarly, set of traceability rules can be defined for other mappings. 

10   Conclusion 

Product line software engineering is a practical framework that utilizes CBSE princi-
ples in order to support the economic development of a set of applications in a do-
main. Hence, the components used in PLSE should conform to relevant domain stan-
dards or they must at least provide common functionality of a domain. Also, the vari-
ability should be modeled in components so that a product member-specific business 
logic or requirement can be supported through component tailoring or customization. 

In this paper, we proposed a 5-phase process to identify and model the commonal-
ity and variability (C&V) and present a framework to reason about the identified 
C&V model in order to enable effective implementations of PLSE components. Ac-
tivities within a phase are given a set of instructions and artifact templates. The whole 
process has been applied to a case study of banking domain. In addition, the traceabil-
ity among artifacts and guidelines to enforce the traceability were given. With the 
proposed process and guidelines, the C&V can be systematically modeled into com-
ponent framework, and the quality of delivered frameworks can be increased by ap-
plying traces using the proposed traceability foundation. 
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Abstract. Automatic component composition is a way to achieve self-
customizable systems that are able to adapt themselves through struc-
tural configuration to changing conditions in their environment. In this
paper, we propose an automatic composition strategy for multi-flow ar-
chitectures with hierarchically composable components. Our composition
strategy takes automatic decisions for the composition of a target that
is specified through a set of required properties imposed over its given
structural constraints. The composition decisions are taken knowing the
properties provided by individual available components. Properties char-
acterize functional or non-functional aspects of a component. The com-
position strategy is driven by a mechanism of propagation of required
properties, detailed in this paper.

1 Introduction

Component-based development is a proven approach to manage the complexity
of software and its need for customization. An important challenge is to build new
systems that provide certain properties, by systematically composing reusable
components. Our research approaches the problem of component composition
from the point of view of the decisional question: how to decide what components
will be deployed and what collaborations will be between them?

The need for rigorous strategies for compositional decisions appears partic-
ularly in circumstances when the composition decision must be a machine deci-
sion, as it is the case when automatic component composition is used as a means
to realize self-customizable systems. Our work addresses self-customizable sys-
tems that are able to adapt themselves to their evolving runtime environment.
Such automatic software composition is based on a compositional model that
comprises:

– A component description scheme and formalism. This establishes what in-
formation is needed to be known about the components in order to make
composition decisions.
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– A well defined requirements driven composition strategy. This establishes the
rules for selecting the necessary set of components and determining their
integration, based on the available information about the components.

Many approaches tackle composition in domain-specific ways. We argue that
compositional models should be architectural style specific and independent from
application domains, to create a premise for generic solutions. We have developed
a compositional model for multi-flow architectures based on composable compo-
nents. It comprises a component description scheme for hierarchically compos-
able components with its description language CCDL (introduced in [ŞVB03])
and a requirements driven composition strategy, which is described in this paper.

The composition strategy implements rules for finding a component compo-
sition with desired properties, based on the properties of individual components
described according to the CCDL scheme ([ŞVB03]). Supporting unanticipated
compositions (in terms of deployed components and structure) is a main ob-
jective of our composition approach. This paper presents the principles of our
composition strategy, introducing the mechanism of propagation of requirements
as its driving element.

The remainder of this paper is organized as follows: Section 2 presents briefly
our architectural component model as the premise of our work on automatic
composition. Section 3 details the mechanism of propagation of requirements
and Section 4 presents the composition strategy. Finally, Section 5 discusses our
research in the context of related work, while the last section summarizes the
conclusions.

2 Architectural Model and Composable Components

This section presents briefly the main concepts of our component model.
A software system is viewed as a set of components that are connected by

connectors. A software component is an implementation of some functionality,
available under the condition of a certain contract, independently deployable
and subject to composition [Szy97]. Moreover, a component in our approach is
also an architectural abstraction.

We consider that the system architecture reflects interaction relationships
among the components. A component has a set of ports for the interaction
with the rest of the system. A port is “a logical point of interaction between the
component and its environment” [AG97]. Distinction is made between input and
output ports. In our approach all components are considered plug-compatible in
the sense that an input port can be connected to an output port.

Our current work on composition investigates systems that have a multi-flow
architecture. The concept of flow corresponds to the data-flow relation among
pairs of ports. A flow has parts where it is internal to a component (from an
input to an output port of that component) and parts where it is between two
components (a connection). We define the multi-flow architecture as a varia-
tion of the pipes-and-filters architecture, where the architecture of a system is
completely defined by the dataflow relations (the “flows” in our terminology).
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The flows are fixed, while the positions of components on these flows are not
important. Components must just fit on the fixed flows. For every component,
the internal flows must be known so that they can be integrated in such a flow
architecture.

Components can be simple and composed. A simple component is the ba-
sic unit of composition, has one input port and one output port. A composed
component is an aggregation of several other components, it may have several
input and output ports. Multi-flow architectural style applies to the internal
configuration of composed components.

A component’s contract specifies the services provided by the component
and the obligations of its clients and environment. In our approach, contracts
are expressed through sets of required-provided properties. A component prop-
erty is a fact that is known about the component. In our approach, a property is
expressed through a name from a vocabulary set and may have attributes or re-
fining subproperties. The name of the property is treated in a semantic-unaware
way: this means that a match between required and provided properties is es-
tablished by matching names and attributes. Provided properties are associated
with components as a whole, requirements are associated with ports.

An important element of our approach is that composed components are
also “first class” components, they have their own properties and contractual
interfaces. A composed component as a whole is always defined by its own set of
provided properties, which expresses the higher-abstraction-level features gained
through the composition of the subcomponents. The vocabulary used to describe
the own provided properties of a composed component is distinct from the vocab-
ulary deployed for describing the provides of its subcomponents. This abstraction
definition must be done by the designer of the composed component.

The internal structure of a composed component is mostly not fixed, these
components are composable in the limits of certain structural constraints. These
structural constraints ensure the preservation of the identity of the composable
component. As they have been introduced in [ŞVB03], the structural constraints
are flexible guidelines for future compositions of the internal structure but not a
full configuration description. Structural constraints of a composable component
are expressed through: the set of internal flows, the properties that must exist
on these flows, and possibly the order relationships between these properties.
The structural constraints are a solution that balances between the need to
support unanticipated customizations of the internal structure of a composable
component and the need to preserve the properties that determine the identity
of the composable component.

An important strength of our approach is that it does not limit the cus-
tomization of composable components to filling in a given structure with right
implementations. It is possible that new components, which can provide further
enhancements or customizations for the composed component, are discovered.
The insertion of these new subcomponents is permitted anywhere on the ex-
isting flows, as long as their component descriptions do not contradict existing
requirements (structural constraints of the composed component or requirements
of the components already present on that flow). The composition strategy au-
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tomatically decides which subcomponents to deploy on the internal flows of the
composed target, starting from the requirements imposed by the client and com-
plying with the structural constraints of the target. This strategy is based on
a mechanism of propagation of requirements that will be detailed in the next
sections.

3 The Mechanism of Propagation of Requirements

The operation of matching required properties of one component with provided
properties of other components can be a complex process. The complexity resides
in the fact that interactions of properties cannot be isolated to pairs of interacting
components, but most often there are large groups of components with transitive
interaction relationships between them. In order to manage the complexity of
such situations we define and use a mechanism of propagation of requirements.
This is discussed here, starting in subsection 3.1 with a simplified case and
developing to the general case in subsection 3.2.

3.1 The Linear Case

First we introduce the mechanism of propagation of requirements in the lin-
ear case, corresponding of a single-flow system containing a sequence of simple
components.

In this case, each component has one input port and one output port. The
requirements associated with the input port address components that are before
the current one on the flow. These requirements are upward requirements. The
requirements associated with the output port address components that are below
the current component and we name them downward requirements. By default,
it is sufficient that a required property associated with a port is provided by a
component that is present somewhere on the flow connected to that port. The
requirements of a component are not necessarily met by immediate neighbors of
that component, but by some components situated further on the corresponding
flows. One can specify immediate requirements, which apply only to the next
component on that flow. Also negative requirements (a property should not be
present in a flow) are possible.

Given a component C, it has, at an arbitrary moment during the composition
process, a set CU of n upward requirements, CU = {CUi}i=1...n and a set CD
of m downward requirements, CD = {CDi}i=1...m. To ensure that the contract
of C is fully complied, C must be part of a composition where the components
placed above C fulfill all its upward requirements CU and the components below
C fulfill all downward requirements CD.

The goal of the composition process is to find the two sets of components that
placed above C and below C fulfill all its requirements. Of course, each of these
components introduces their own requirements, that have to be also fulfilled.

The initial requirements of C can be propagated to its neighbor components,
if the neighbor component does not provide them itself. This mechanism works
like delegating the responsibility for these requirements to the neighbor compo-
nents.



www.manaraa.com

378 Ioana Şora et al.

Let a component X provide the set of properties XP and have the upward
requirements XU . It makes sense to connect component X above component C
(make X the top neighbor of C by connecting the output port of X to the input
port of C) if it provides a part of component’s C current upward requirements.
The subset of C’s upward requirements that are fulfilled by component X is a
set of properties named XPCU ,

XPCU = XP
⋂

CU (1)

If XPCU is not void (that means, component X provides at least some of
the upward requirements of component C), component X will be connected at
the input port of C.

Most often, component X does not fulfill all the current upward requirements
CU of C, such that a subset XNPCU of CU remain not fulfilled:

XNPCU = CU −XPCU (2)

All the properties belonging to the set XNPCU are requirements that must
be fulfilled by other components connected above C. These properties will be
added to the set of upward requirements of component X, process that is called
upward propagation of requirements.

Following this propagation, the new set of upward requirements of component
X becomes XU ′:

XU ′ = XU
⋃

XNPCU (3)

The set of properties XU ′ is a new set of requirements to continue the upward
searching of components.

The downward propagation of requirements is defined in a similar manner.
Let a component Y provide the set of properties Y P and have the downward
requirements Y D. It makes sense to connect component Y below component C
(connect the output port of C to the input port of Y ) if it provides a part of
component C’s current downward requirements. The subset of C’s downward
requirements that are fulfilled by component Y is a set of properties Y PCD,

Y PCD = Y P
⋂

CD (4)

A subset Y NPCD of component C’s downward requirements remain not
fulfilled by component Y :

Y NPCD = CD − Y PCD (5)

All the properties belonging to the set Y NPCD will be added to the set
Y D of downward requirements of component Y , process that is called downward
propagation of requirements.

Y D′ = Y D
⋃

Y NPCD (6)

Figure 1 depicts an example of linear propagation of requirements.
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Fig. 1. Linear propagation of requirements

The example in Figure 1 involves three components: component C, compo-
nent X, and component Y . Component C has the upward requirements CU ,
where CU = {CU1, CU2} and the downward requirements CD, with CD =
{CD1, CD2}. A composition that solves the requirements of C must be found.
Let a component repository contain among others components X and Y . Compo-
nent X provides XP = {XP1} and has own upward requirements XU = {XU1}.
Component Y provides the set of properties Y P = {Y P1, Y P2} and has own
downward requirements Y D = {Y D1}. We ignore at this step of the example
the upward requirements of Y and the downward requirements of X.

It is given that property XP1 matches property CU1 and property Y P1
matches property CD2. That means that component X fulfills one of C’s up-
ward requirements and component Y fulfills one of C’s downward requirements.
Component X will be connected on top of component C, making a connection
X.Out → C.In and component Y will be connected below component C through
a connection C.Out → Y.In. After these connections, the subset XNPCU ,
XNPCU = {CU2}, of C’s upward requirements remain unfulfilled and will be
propagated to the port X.In.

The new set of upward requirements of X is now XU ′ = {XU1, CU2}.
Similarly, the subset of C’s downward requirements not fulfilled by Y is

Y NPCD = {CD1}, and will be propagated from C to the port Y.Out. The
new downward requirements of Y are now Y D′ = {Y D1, CD1}. After having
connected component X as the neighbor on top of C and component Y the
neighbor below C, the searching for new components continues having XU ′ and
Y D′ as driving requirements.

The downward requirements of component X as well as the upward require-
ments of component Y have been ignored until now. If C does not fulfill the
downward requirements of X, then a propagation of these from X to C will also
occur; the same for upward requirements of Y .
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An example of using linear propagation of requirements for the automatic
composition of customized network protocol stacks is our early work1 [ŞMBV03],
where a protocol stack is automatically built as a composition of protocol layer
components according to client requirements.

The linear case is simple and intuitive, yet not sufficient for the building of
more complex systems according to fine-tuned requirements. In the next sub-
section, the mechanism of propagation of requirements is generalized for com-
ponents with an arbitrary number of input and output ports that are part of
multiflow architectures of hierarchically composable components.

3.2 The General Case

In the general case, the terms “upward” requirements and “downward” require-
ments become obsolete as they loose their semantics. In this general case, one
cannot identify one component as being “over” or “under” another component.
This kind of order relationships can be established only between ports that are
connected to the same flow. The components have requirements associated with
their ports (input ports as well as output ports). The requirements associated
with input ports address the flow that comes into this port, while the require-
ments associated with output ports address the flow that goes out this port.

In order to be able to accurately study the interactions between components
with multiple ports that are in a chain of connections, it is necessary to know
for each component the relationships between its input port and output ports
(the intracomponent pathways as they are named in [SW01]). In our model, the
internal flows fixed by the structural constraints of a composable component
identify the intracomponent pathways. Propagation of requirements in the case
of components with multiple ports will occur only along the intracomponent
pathways.

Given a component C, it has NIC input ports and NOC output ports. The
requirements associated with an output port C.Outo, o ∈ [1 . . . NOC ] are a set
COo of properties.

A component Y has NIY input ports and NOY output ports and provides
the set of properties Y P . The component Y fulfills a subset Y PCOo of the
requirements COo associated with port C.Outo,

Y PCOo = Y P
⋂

COo. (7)

If Y PCOo is not empty, the decision to connect port C.Outo to an input port
of component Y (the port Y.Ini, i ∈ [1 . . . NIY ]) is taken. The selection as
connection port of the port i out of the NIY input ports is based on additional
tests of contracts and is part of the composition strategy, hence not discussed in
this section. After doing this connection, most of the cases there will still remain
some requirements of Y that are not provided by C.Outo, the set Y NPCOo

Y NPCOo = COo − Y PCOo. (8)
1 Paper written in 2001, delayed in publication.
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In the component Y , the input port Y.Ini affects only a subset Y FIi of all the
output ports Y out of the component,

Y FIi ⊂ Y Out, Y Out = {Y.Outo|∀o ∈ [1 . . . NOC ]} (9)

The elements of Y FIi are those output ports of Y that are situated on intra-
component pathways originating in Y.Ini. The properties in the set of unfulfilled
requirements Y NPCOo will be propagated to all the ports in Y FIi. After the
propagation, at every port Y.Outo the new set of requirements Y O′

o will be:

∀Y.Outo ∈ Y FIi : Y O′
o = Y Oo

⋃
Y NPCOo (10)

This is the mechanism of propagation of requirements associated with output
ports. The propagation of requirements associated with input ports is defined in
a similar way.

Figure 2 presents an example of the general case of propagation of require-
ments.

C 

Out 
 

Y 
 

In1 
 

Out1
 

In2 
 

In3 
 

Out2
 

Out3
 

Out4
 

CO11, CO12 

YO11, CO12 YO41, YO42,  CO12 

YP1 ≡ CO11 

Fig. 2. Propagation of requirements – the general case

The example contains a component C that has one output port C.Out1 with
the associated set of requirements CO1 = {CO11, CO12}.

Component Y in this example has NIY =3 inputs and NOY =4 outputs. The
set of properties provided by Y is Y P = {Y P1} and it is known that property
Y P1 is a match with property CO11. Component Y has four internal flows
and they are: In1 → Out1, In1 → Out4, In2 → Out2 and In3 → Out3. If
port C.Out1 is connected to port Y.In1, this fulfills requirement CO11 of port
C.Out1. The requirement CO12 of C.Out1 remains not provided yet and will
be propagated to ports Y.Out1 and Y.Out4 (the ports that are connected with
input Y.In1).
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4 Composition Strategy

We formulate the automatic composition problem as: given a set of require-
ments describing the properties of the desired system (the composable target),
and a component repository that contains descriptions of available components,
the composition process has to find a set of components and their interactions to
realize the desired system. This composition decision occurs through the compo-
sition strategy implemented in a Composer tool.

We address the requirements driven composition of a multi-flow system by
dividing it into subproblems of linear compositions on each flow of the system.
Achieving fine-tuned compositions and managing the complexity of the system
are possible in our approach by deploying hierarchical composable components.
This leads to hierarchically recursive compositions. The driving force of the
composition search are the requirements and the propagation of requirements.

First we present the strategy for linear composition on a flow. In the linear
case, the composition problem is to determine an ordered sequence of compo-
nents aligned on a single flow. For presentation terminology, we consider this
flow to have a descending orientation. The components align in a layered form
on this flow. The client level is the first layer (the “highest” one) and expresses
the requirements set REQ imposed for the composable target as its downward
requirements. The requirements in REQ are expressed as sets of required prop-
erties defined using the same vocabulary as that used for the component de-
scriptions, and possibly as ordering restrictions between properties. Ordering
restrictions are generated in most of the cases by the structural constraints. The
set of requirements REQ results from the set of requirements CR directly im-
posed by the client and from the set of requirements SCR that emerge from the
structural constraints of the target. Figure 3 depicts the start assumptions for
linear composition.

A dummy start component C0, having REQ as its downward requirements,
is created, as Figure 3 shows. The set of requirements REQ is the current driving
force for the composition. The search begins looking for components that provide
at least a part of the required properties from REQ. If such a component Cx,
providing part of REQ, is found, it will be connected below C0. Component
Cx has also its own requirements, upward and downward. The new downward
composition driving requirements are now the downward requirements of Cx,
together with the propagated part of the initial requirements and the search
continues. A component is selected for the solution if it matches at least a subset
of the current driving requirements. Similarly, the upward requirements of Cx

become the upward composition driving set.
A solution is considered complete when the current composition driving re-

quirements set becomes empty. It is possible that for certain sets of requirements
no exact solution can be found. The Composer can be configured to respond to
this problem in alternative ways, either to relax the client requirements and
produce a solution, or to abort composition.

The general case addresses complex systems with multi-flow architecture. An
example of how composition results through stepwise refinements is depicted in
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In 

Out 

In 

Out 

 

REQ=CR ∪  SCR
 

SCR  
(requirements 
emerging the 
structural constraints 
of the composable 
target) 

CR  
 (client  
 requirements) 

 

 
C1 

CN 

Dummy  
Component 

Composition 
structure 

Fig. 3. Composition strategy - the linear case

Figure 4, where the composition target is the internal structure of the composable
component C. The set REQ of requirements for the target results by uniting
the direct client requirements and the own structural constraints of C.

? 

?

?

Client 
requirements 

Structural 
constraints 

C 

C1

C2

Compose  
C1, C2 

Compose  
C21, C22

Compose  
C11, C12, C13 

Fig. 4. Composition through stepwise refinements
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After a composition search has determined that it wants certain component
types (C1 and C2 in the example in Figure 4) in place to fill in the structure,
a new search may be launched for composing the internal structure of these
components. Such hierarchically recursive compositions will occur especially if it
is necessary to satisfy subproperties of the required properties. Let the original
requirements set containe a property p1 with the subproperties p11 and p12
and component C1 provide property p1. Component C1, found to provide p1,
will have to be fine-tuned so that its internal structure is compliant to the set
of subrequirements p11, p12. The set of required properties p11, p12 represent
direct client requirements for the composition of target C1. Together with the
structural constraints for C1, these requirements lead to the composition of the
internal structure of C1 from components C11, C12, C13.

?

encrypt,  
compress WITH huffm 

compress > 
encrypt SENDER 

COMPRESSER 

ENCRYPTER 

Compose  
COMPRESSER,  
ENCRYPTER 

compress   

encrypt  

SENDER 

compalg 

huffm 

compalg, 
huffm   

frecv 

REQ:frecv 

COMPRESSER 

ALSR 

HUFCR 

Compose  
ALSR, HUFCR 

Fig. 5. Composition example

As an example illustrating the concepts presented, we consider the simple
scenario depicted in figure 5. The compositional target is a SENDER com-
ponent that can be customized according to different client requirements. The
client requirements in this example contain both encryption and compression
of sent data with a particular compression algorithm. These requirements are
expressed as properties from the universal properties vocabulary, encrypt and
compress. Property compress is specified with a subproperty huffm (com-
pression with the Huffmann algorithm is required). The structural constraints
of the SENDER in this example state the ordering restriction that if the
property compress is present, it should be on the internal flow above property
encrypt. Through propagation of all these requirements results immediately the
solution of composing SENDER from the components COMPRESSER and
ENCRY PTER as in the figure. (Without the ordering restriction, both se-
quences COMPRESSER before ENCRY PTER and ENCRY PTER before
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COMPRESSER are possible.) Further, the component COMPRESSER is
also a composable one and its internal structure must be composed according
to the current client requirements, specified by property huffm. The structural
constraints of the COMPRESSER component specify that it must contain
the property compalg on its internal flow (it must contain the implementa-
tion of an arbitrary compression algorithm). Starting from these requirements
the solution search on the internal flow of COMPRESSER begins. Compo-
nent HUFCR provides properties huffm and compalg and will be deployed
inside COMPRESSER. HUFCR requires property frecv at its input port (as
Huffmann compression requires a static analysis of the data), thus the search
continues in the upward direction of the flow and adds the analyzer compo-
nent ALSR which provides frecv. Since no requirements are left unfulfilled,
component COMPRESSER is ready composed from components ALSR and
HUFCR.

5 Discussion and Related Work

A distinctive characteristic of our composition approach is that it works with
abstractions of the architectural level. This is according to our insight that archi-
tectural style dependent composition models, independent from the application
domains, are needed. This permits a generic solution, avoiding coding of spe-
cific solutions for each application domain. The approach is to build a system
by assuming a certain defined architectural style. Treating component composi-
tion in the context of the software architecture is a largely accepted approach
([Ham02], [Wil03], [IT03],[BG97], [KI00], as it makes the problem manageable
and eliminates the problems of architectural mismatch. Also, we argue that at the
architectural level compositional decisions are made with knowledge of the ar-
chitectural style, but ignoring technological details of the underlying component
model, as long as this provides the infrastructural support needed for runtime as-
sembly of components. Components are described through their properties, seen
as facts known about them – in a way similar to Shaw’s credentials ([Sha96]). The
composition strategy interprets properties in a semantic-unaware way by having
a general matching criteria, thus no application-domain specific code occurs in
the Composer. The general composition strategy described in this paper emerges
from our experience with automating composition in two different application
domains where systems have multi-flow architectures – self customizable net-
work protocols ([ŞMBV03], [ŞVB02]) and an intelligent environment for virtual
instrumentation in measurements and control.

The mechanism of propagation of requirements used in our approach is a
generalization rooted in Perry’s mechanism of propagation introduced in [Per87],
[Per89]. Perry defines a semantic interconnection model for the verification of
program semantics, at the level of procedural programming. It extends Hoare’s
specification of program semantics with pre- and postconditions, proposing an-
other category of clauses, the obligations. Preconditions must be satisfied by the
postcondition of an operation that follows on the control flow. Obligations are
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conditions that must be satisfied by postconditions of operations that precede
them on the control flow. In Perry’s mechanism, preconditions and obligations
are propagated to the interface of the containing module. Our upward require-
ments may be similar to preconditions, obligations to downward requirements
and postconditions to provided properties.

Perry’s model deals with the composition of small-grained entities: proce-
dures and functions. Batory et. al. ([BG97], [BCRW00]) propose a similar model
for the composition of components in GenVoca architectures (layered systems).
The entities subject to composition are components, implemented as classes, and
are used in layered compositions that can be seen as components being put on
top of each other. From the compositional point of view, these components can
distinguish only between two interaction points, one upper and one lower inter-
action point. A particularity of their approach is that a layer provides different
properties for the layer on top of it as it provides for the layer below it. This leads
to two kinds of pre- and postconditions. Postconditions are named the properties
that are provided to the components below it and postrestrictions the properties
provided to the components on top. Preconditions are requirements that are di-
rected toward components on top while prerestrictions are requirements directed
to components below. In [BG97] an algorithm for the verification of the correct-
ness is given, verification done by downward propagation of postconditions and
upward propagation of postrestrictions.

Our approach brings two important contributions. First, we generalize the
principle of propagation to non-linear structures. Also we adapt it in the context
of components. Our model considers that the provided clause is associated to
the component as a whole; a component provides the same properties to all its
interacting entities. Requirements are associated with individual ports of the
component.

Second, the goal of our model is to serve the automatic component compo-
sition (to generate the structure of the target assembly) rather than only the
verification of a given assembly structure as in the related works. The mechanism
of propagation of requirements is the driving force of our searching algorithm.
Therefore, in our model the propagated elements are the required properties and
not the provided properties.

Our current implementation of a composition algorithm does exhaustive
searches and thus has the disadvantage of exponential time. We foresee to im-
plement improvements of it using a search based on heuristics. The mechanism
of propagation of requirements as described in this paper will remain a central
element of the search.

Our work tackles composition decisions at the semantic level. Other research
in automating the composition or adaptation of components deal with the prob-
lem at the behavioral level. Different kinds of finite automata or message se-
quence charts (MSC) are used to model the behavior of components ([SR00],
[SVSJ03], [IT03]). The behavioral compatibility tests for components check the
matching according to syntactic and synchronization criteria. Without consider-
ing also semantic level information it is possible that a behavioral test declares
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as compatible semantical different components that happen to have compatible
automata, so semantic checking is needed together with behavioral checking.

6 Conclusions

Our research defines a compositional model for multi-flow architectures that
comprises

– a scheme and a language for the description of composable components by
semantic–unaware properties and structural constraints.

– a requirements driven composition strategy capable to implement automatic
composition decisions starting from the descriptions of the available compo-
nents and from the requirements for the compositional target.

In this paper, we presented the principles of our composition strategy, intro-
ducing the mechanism of propagation of requirements as the central element
of our composition strategy. This strategy is implemented by an automatic
Composer tool that facilitates the building of self-customizable systems. The
strengths of our strategy are its simplicity, its application domain independence,
and the possibility to compose unanticipated configurations.
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